
Overcoming Coupon Collector’s Syndrome
when Optimizing Multimodal Domains

PPSN-2024
workshop on “Multimodal Multiobjective Optimisation”

Ofer M. Shir (Tel-Hai College & Migal Institute, ISRAEL)
ofersh@telhai.ac.il

Shir PPSN-2024 1 / 22

mailto:ofersh@telhai.ac.il


problem statement: singleobjective multimodal

Search over multimodal domains may induce different targets /
research questions:

(i) multiple solutions: usually for engineering purposes
(ii) global only! as in the global optimization challenge
(iii) landscape research: assessing structure and topology

These 3 targets are typically addressed by different researchers and
clearly result in different algorithms design.
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attaining multiple solutions

The engineering motivation is usually strong, sometimes even to the
extreme – it is worth mentioning the so-called Second Toyota Paradox:1

“Delaying decisions, communicating ambiguously, and pursuing an
excessive number of prototypes, can produce better cars faster and
cheaper.”

This engineering incentive provides a clear practical motivation to the
area of Niching Methods,2 whose mission statement is stated as
Attaining the optimal interplay between partitioning the search space
into niches occupied by stable subpopulations, by means of population
diversity preservation, and exploiting the search in each niche by
means of a highly efficient optimizer with local-search capabilities.
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niching in a nutshell
A robust measure to assess the number of species is the Solow-Polasky
diversity:3,4 let Ψ := (ψij) ∈ Rn×n represent the exponential decay of
the mutual distances,

ψij = exp (−γ · dX (~xi, ~xj))

Then, this diversity measure is defined as the following scalar:

DSP = ~1T Ψ−1~1 (1)

Niching techniques either “penalize dense subpopulations”,
• fitness sharing (Holland, 1975)
• crowding (de Jong, 1975)
• clearing (Petrowski, 1996)

or “enforce separation”
• islands
• clustering
• repulsion
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repelling subpopulations

The idea of “avoiding duplicates” is a fundamental concept in heuristic
search – recall the classical Tabu Search.

The CMSA with Repelling Subpopulations (RS-CMSA) has been
proposed as a niching technique (Ahrari+Deb+Preuss, 2017) and
proved successful as such.
It introduced the Tabu Rejection Probability to eliminate candidate
search points in areas that have been already populated.

This repulsion concept has proved beneficial in solving niching
problems, and advanced the field also by removing assumptions on
niche radius or landscape structure.
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alternative: going sequential
A straightforward approach of iteration can be used to sequentially
locate multiple peaks in the landscape via an iterative local search:5
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Restart converging to new local optimum
Restart converging to previously found local optimum
Restart converging to global optimum
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the coupons collector’s problem
Revisiting optima resembles the so-called Coupon Collector’s
Problem – a classic problem in Probability Theory:

Suppose there are q distinct types of coupons, and each time you collect
a coupon, it is equally likely to be any one of these q types. How many
coupons do you need to collect, on average, to obtain at least one of
each type?
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cost of retrials’ näıvity

Given q unique coupons, the expected number of trials needed to
collect them all, with replacement, is

q ·Hq with Hq :=
q∑

t=1

1
t

(being the qth harmonic number).

This can be approximated by:

E(q) ≈ q ln q + γq

where γ is the Euler-Mascheroni constant, γ ≈ 0.577.

For instance, given a target set of 50 distinct coupons, the expected
number of coupons needed to cover this set is ≈225.
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näıve restarts

If the procedure is blind to any information accumulated throughout
previous runs, and it sequentially restarts stochastic search processes,
the ambition to hit a different peak in every run resembles the
collector’s hope to obtain all the coupons in only q trials.
Overall, it is likely to encounter redundancy, and the number of
expected iterations is then increased by a factor.

A redundancy factor can be derived if the peaks are of equal
fitness (the probability to converge into any of the q peaks is uniform
and equal to 1/q): Hq.6
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but optima are often non-uniform

The attraction strengths of different basins play a role in landscapes
with non-uniform optima. Definitions of attraction basins vary:

(i) Region of Convergence focuses on the set of initial points that
cause an algorithm to converge to a local minimum.

(ii) Set of Points formalizes the basin of attraction using the
sequence of iterates from the optimization algorithm.

(iii) Downhill Region provides a geometric criterion based on the
gradient to ensure movement towards the local minimum.

Hill-Valley: a “low-cost” heuristic to determine whether two points
belong to the same basin of attraction.
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pap300: avoiding redundant restarts in
multimodal global optimization

Motivated by Tabu search, and by adopting the niching-repulsion
concept, the idea is to prevent scenarios of re-sampling already-visited
basins of attraction.

This study, to be presented on Tuesday (Session-4), introduces the
so-called RR-CMA-ES.

The results demonstrate improved performance (decreased redundancy
factors) over the BBOB+CEC2013 test-sets when compared to
standard restart schemes (IPOP, BIPOP).
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and now let’s arrive at multiobjective optimization

The coupons collector’s multiobjective analogy:
Given a set-oriented method searching over a multiobjective space,
the problem occurs when the algorithm picks Pareto optimal points
with low decision-space diversity w.r.t. the existing set.

Let X ⊂ Rn denote the set of feasible solutions, Y ⊂ Rm its image in
the objective space. If x ∈ X , then y = f(x) ∈ Y, and the ith objective
function value is y(i) = f (i)(x).
Given a subset E of Y and a point y ∈ Y, we quantify the diversity
measure of y with respect to this subset (ye ∈ E):

dE(y) := min
ye∈E

(
max

1≤i≤m
y(i) − y(i)

e

)
. (2)
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set-oriented method with two diversity measures
An algorithm that iteratively minimizes dE(y) already exists (DMA)7

and is proven to obtain Pareto optimality.8
But how do we overcome the syndrome?

Given a metric dX (·, ·) over the decision space X , for any subset V ⊆ X
we define dX (x, V ) := min{ dX (x, v | v ∈ V )} ≡ dV (x).

We then formulate a paired optimization problem:

Primal: maximizex dV (x), subject to x ∈ X , y = f(x), dE(y) ≤ δE

(3)

Dual: minimizex dE(y), subject to x ∈ X , y = f(x), dV (x) ≥ δV

(4)
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greedy over the primal-dual is a proven 2-approximation

In the Primal (3), the decision-space diversity is enhanced by
compromising the Pareto optimality by δE .
In the Dual (4), the aim is to add Pareto optimal points that are far
enough w.r.t. dV (x), at least δV .

Dual Greedy Algorithm for solving (4):
1 Initialize:

(a) Find V1 = {x1} ⊆ XP ar, E ⊆ Eeff

(b) Set V = V1, j = 2, J = (maximal number of iterations).
2 Solve the Dual optimization problem (4). If there is a feasible

solution then y∗ = f(x∗) is the optimal solution, else go to Step 4.
3 Set Vj = Vj−1 ∪ {x∗} and V = Vj , j = j + 1. If j > J ,

go to Step 4, otherwise go to Step 2.
4 Return V .
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2-approximation proof + aircraft engine design

The obtained V is proved to be a 2-approximation solution.

We solved an aircraft engine design problem (UTRC: United
Technologies Research Center) with highly-satisfactory results:
Objectives: minimize Design Cost + minimize Fuel Consumption
Search-space: 6 design variables, 70 state variables, a few hundreds of
constraints; a tailored dV : weighted normalized Euclidean, greater
weight on integer.
Implementation: AMPL on top of Bonmin solver (COIN-OR).

Zadorojniy, A., Masin, M., Greenberg, L., Shir, O.M., Zeidner, L.:
Algorithms for Finding Maximum Diversity of Design Variables in
Multi-Objective Optimization. Volume 8 of Procedia Computer Science,
Elsevier (2012) 171-176.
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Discussion
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Backup
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region of convergence

In the context of an iterative optimization algorithm (e.g., gradient
descent), the region of convergence refers to the subset of the search
space such that starting from any point within this region, the
algorithm converges to a particular local minimum x∗. Formally, if
{xk}∞k=0 is the sequence of iterates produced by the algorithm starting
from x0 = x, then the region of convergence to x∗ is:

R(x∗) =
{
x0 ∈ Rn | lim

k→∞
xk = x∗

}
Here, the algorithm iteratively updates xk based on some rule, and the
region R(x∗) contains all points that eventually lead to x∗.
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attraction basins

This definition formalizes the basin of attraction as a set of points in
the search space. For a local minimum x∗ of a continuously
differentiable function f(x), the basin of attraction is the set of
points x0 ∈ Rn such that if an algorithm starts at x0, the sequence of
points generated by the algorithm converges to x∗:

B(x∗) =
{
x0 ∈ Rn | lim

k→∞
xk = x∗ where xk+1 = A(xk)

}
Here, A(xk) represents the update rule of the optimization algorithm
(e.g., gradient descent, Newton’s method), and the set B(x∗) contains
all points that converge to x∗.
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downhill region

The downhill region provides a geometric interpretation of the basin
of attraction. It refers to the region in the search space where the
objective function f(x) is decreasing as you move toward a local
minimum x∗. Mathematically, for a descent-based optimization method
(such as gradient descent), a point x0 is in the downhill region if:

∇f(x0) · (x0 − x∗) > 0 for all x0 ∈ D(x∗)

This indicates that the gradient of f(x) at x0 points in the direction of
the local minimum x∗, meaning that the function value decreases as
the algorithm moves toward x∗.
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