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Tutorial Objectives

Go beyond the classical AAC scenario
Special focus on dealing with multiple objectives

At the algorithm level
At the performance level

4



Profile

You are (somewhat) familiar with . . .
Automated Algorithm Configuration

Multi-objective optimization

You understand the importance of including AAC
in research involving benchmarking. i.e. anywhere
where you compare the performance between
algorithms.

No perfect fit? No worries!
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Agenda

Part I: Crash course on
AAC and Multi-objective optimisation

Part II: AAC for Multi-Objective Optimization Algorithms

Part III: AAC for Improving Anytime Behaviour

Part IV: AAC for Multiple Performance Objectives

Part V: Wrap-up
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Part I

Crash course on
AAC and Multi-objective optimisation
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AAC formal definition

Find a configuration for an algorithm
that optimises the overall performance for a specific task.

Formulated as optimisation problem:

θ∗ = arg max
θ∈Θ

Eπ∼D p(Aθ, π)

Θ Configuration space
A Algorithm
I Problem domain
D Distribution over problem instances with domain I
p Performance measure p : Θ × I → R

I is usually represented by a set of instances (N)
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AAC diagram

Instances I

Algorithm
A with

Configuration
Space Θ

Select θ ∈ Θ
and π ∈ I

Run Aθ on π
to measure
p(Aθ, π)

Configuration Task

Return best
configuration θ∗
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Algorithm Configuration

Train
👨

Observe

Satisfied?

Update params

Human
Slow
Biased
Untrackable
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Automated Algorithm Configuration

Train
🤖

Observe

Satisfied?

Update params

Human
Slow
Biased
Untrackable

Machine
Fast
Unbiased
Systematic
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AAC - Configuration space Θ
Parameter configuration space (PCS) [Hutter & Ramage, 2015]

Name, type, range & default a integer [0,255] [8]
Conditional parameters b | c in {foo}
Forbidden combinations a=0, c=foo

Example for sklearn.models.RandomForest:
bootstrap categorical {True, False} [True]
criterion categorical {gini, entropy, log_loss} [gini]
max_depth_type categorical {None, int} [None]
max_depth integer [1, 100] [10]
max_depth | max_depth_type == int

Θ = {(True, gini , None,−), (True, gini , int, 1), . . . }

|Θ| = 606
11



AAC - Parameter space Θ

bootstrap categorical {True, False} [True]
criterion categorical {gini, entropy, log_loss} [gini]
max_depth_type categorical {None, int} [None]
max_features_type categorical {special, float} [special]
max_leaf_nodes_type categorical {None, int} [None]
min_impurity_decrease real [0.0, 0.5] [0.0]
min_samples_leaf integer [1, 100] [1]
min_samples_split integer [1, 100] [2]
min_weight_fraction_leaf real [0.0, 0.5] [0.0]
n_estimators integer [1, 500] [100]
max_depth integer [1, 100] [10]
max_features_float real [0.0, 1.0] [0.5]
max_features_special categorical {sqrt, log2, None} [sqrt]
max_leaf_nodes integer [1, 1000] [100]
max_samples_type categorical {None, float} [None]
oob_score categorical {True, False} [True]
max_samples real [0.05, 0.95] [0.8]

max_samples_type | bootstrap == True
oob_score | bootstrap == True
max_depth | max_depth_type == int
max_features_float | max_features_type == float
max_features_special | max_features_type == special
max_leaf_nodes | max_leaf_nodes_type == int
max_samples | max_samples_type == float
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Challenges – Large search spaces

🌌

Planets in the universe
⚛️

Atoms on earth
⚙️

Unique configurations
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Challenges – Large search spaces

🌌

Planets in the universe

≈ 1023

⚛️

Atoms on earth

≈ 1050

⚙️

Unique configurations

≈ 1024

SAT solver lingeling has 10947 distinct configurations
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Challenges – Expensive evaluations

Evaluator Qθ

P(Aθ, N) = 1
|N | · ∑π∈N p(Aθ, π)

Example:
100 instances, ≈ 30s to run → 3000s ≈ 50 minutes
606 configurations · 50 minutes → 21.04 days
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AAC challenges

Large, mixed-type and nested search spaces
Expensive evaluations
Many ’bad’ configurations compared to the default parameters

15



Multi-objective Optimization

Optimize for multiple conflicting objectives.
Obtain solution set that is the trade-off between
the objectives, i.e. Pareto Set.
No other solution should (Pareto) dominate
elements in the solution set.
Projection of solution set in decision space is
Pareto front.
With EMOAs we approximate the Pareto set.

How to compare sets against other sets?
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Performance indicators

Many indicators to measure quality:

Hypervolume / S-metric
IGD
IGD+

ϵ-indicator

R2-indicator
Averaged Hausdorff
distance (∆q)
Riesz S-energy

Cone-based hypervolume
. . .

> 100 indicators recorded. [Zitzler et al., 2003; Knowles et al., 2006; Audet et al., 2021]

Aggregating indicators over various problem instances not always trivial.
Need for reference sets, vectors or points.
Understand how indicators trade each other off /
Find configurations that compromise well on the selected indicators.

17



AAC comes in various forms and names

Hyper-parameter optimization
Hyper-heuristics
Algorithm tuning
Meta-optimization
. . .

18



Offline configuration vs. Online control

Offline tuning / Algorithm configuration
Learn best configuration before solving the real problem instance
Configuration done on training problem instances
Performance measured over test ( ̸= training) instances

Online tuning / Parameter control / Reactive search
Learn best configuration while solving each instance
No training phase
Very popular in continuous optimization
Ultimate goal: parameter-free algorithms

All online methods have parameters that are configured offline

19
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MO tuning vs. Tuning MO algorithms [Bezerra et al., 2020b]

Multi-objective AAC
Multiple metrics to evaluate an algorithm configuration

AAC produces mutually nondominated set of configurations

AAC for multi-objective algorithms
Running a configuration outputs a set of mutually nondominated solutions
(and/or anytime behavior)

Unary quality metrics (Hypervolume, epsilon, IGD+) evaluate the output [Zitzler et al., 2003]

Uses single-objective AAC methods and produces a single best
[López-Ibáñez & Stützle, 2012; Bezerra et al., 2016; Nebro

et al., 2019; Bezerra et al., 2020a; Rook et al., 2022]
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MO tuning vs. Tuning MO algorithms [Bezerra et al., 2020b]

Multi-objective AAC
Multiple metrics to evaluate an algorithm configuration

AAC produces mutually nondominated set of configurations

AAC for multi-objective algorithms
Running a configuration outputs a set of mutually nondominated solutions
(and/or anytime behavior)

Unary quality metrics (Hypervolume, epsilon, IGD+) evaluate the output [Zitzler et al., 2003]

Uses single-objective AAC methods and produces a single best
[López-Ibáñez & Stützle, 2012; Bezerra et al., 2016; Nebro

et al., 2019; Bezerra et al., 2020a; Rook et al., 2022]

Multi-objective AAC of multi-objective algorithms is also possible!
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Part II

AAC for Multi-Objective Optimization Algorithms
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AutoMOEA

22



Multi-objective Evolutionary Algorithms

+30 years of research

Most researched MO metaheuristic

Real-world applications in many domains

Numerous high-quality libraries/frameworks:
jMetal, PyGMO/PaGMO, PyMOO, PlatEMO, . . .

23



MOEAs: Which one?

MOGA [Fonseca & Fleming, 1993]

PAES [Knowles & Corne, 2000]

NSGA-II [Deb et al., 2002]

SPEA2 [Zitzler et al., 2002]

IBEA [Zitzler & Künzli, 2004]

SMS-EMOA [Beume et al., 2007]

MO-CMA-ES [Igel et al., 2007]

MOEA/D [Li & Zhang, 2009]

HypE [Bader & Zitzler, 2011]

NSGA-III [Deb & Jain, 2014]

GDE3 [Kukkonen & Lampinen, 2005]

DEMO [Robič & Filipič, 2005]

DEMOSP2, DEMOIB [Tušar & Filipič, 2007]

Indicator-based Differential Evolution [Tagawa et al.,
2011]

Genetic Diversity Evolutionary Algorithm (GDEA)

∆p-Differential Evolution (DDE)

neighbourhood exploring evolution strategy (NEES)

OPTIMOGA

Biogeography-based multi-objective evolutionary
algorithm (BBMOEA)
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AutoMOEA

✔ Replicate as many well-known MOEAs as possible from the same template

✔ The template has a number of configurable algorithmic components

✔ Each component can be configured by choosing one option from various alternatives

✔ Aim to maximise the number of different configurations that are valid MOEAs

Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle.
Automatic Component-Wise Design of Multi-Objective Evolutionary Algorithms.
IEEE Transactions on Evolutionary Computation, 2016.

Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle. Automatically Designing
State-of-the-Art Multi- and Many-Objective Evolutionary Algorithms.
Evolutionary Computation, 2020.
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AutoMOEA: A MOEA template
1: pop := Initialization ()
2: if typeof (archive) != none then
3: archive :=pop
4: repeat
5: pool := BuildMatingPool (pop)
6: popnew := Variation (pool)
7: popnew := Evaluation (popnew)
8: pop := Replacement (pop, popnew)
9: if typeof (archive) == bounded then

10: archive := Archiving (archive, popnew)
11: else if typeof (archive) == unbounded then
12: archive := archive ∪ pop
13: until termination criteria met
14: if typeof (archive) == none then
15: return pop
16: else
17: return archive

26



AutoMOEA: Main components

Component Parameters

BuildMatingPool ⟨ PreferenceMat , Selection ⟩
Replacement ⟨ PreferenceRep, Removal ⟩

Archiving ⟨ PreferenceExt , RemovalExt ⟩
Preference ⟨ Fitness, Diversity ⟩

27
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Component Parameters

BuildMatingPool ⟨ PreferenceMat , Selection ⟩
Replacement ⟨ PreferenceRep, Removal ⟩

Archiving ⟨ PreferenceExt , RemovalExt ⟩
Preference ⟨ Fitness, Diversity ⟩

Algorithm Fitness Diversity

NSGA-II dominance depth crowding distance
SPEA2 dom. strength kNN
IBEA binary indicator
HypE Ih

H
SMS-EMOA dom. depth-rank I1

H
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AutoMOEA: Redesign of main components [Zitzler et al., 2010]

Component Parameters

BuildMatingPool ⟨ PreferenceMat , Selection ⟩
Replacement ⟨ PreferenceRep, Removal ⟩

Archiving ⟨ PreferenceExt , RemovalExt ⟩
Preference ⟨ Fitness, Diversity ⟩

⟨ Set-partitioning, Quality, Diversity ⟩
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AutoMOEA: Redesign of main components [Zitzler et al., 2010]

Component Parameters

BuildMatingPool ⟨ PreferenceMat , Selection ⟩
Replacement ⟨ PreferenceRep, Removal ⟩

Archiving ⟨ PreferenceExt , RemovalExt ⟩
Preference ⟨ Fitness, Diversity ⟩

⟨ Set-partitioning, Quality, Diversity ⟩

BuildMatingPool Replacement

SetPart Quality Diversity SetPart Quality Diversity

MOGA dom. rank — niche-sharing — — —
NSGA-II dom. depth — crowding dist. dom. depth — crowding dist.
SPEA2 dom. strength — kNN dom. strength — kNN

IBEA — binary indicator — — binary ind. —
HypE — Ih

H — dom. depth Ih
H —

SMS-EMOA — — — dom. depth-rank I1
H —

28



AutoMOEA: Automatic Design

Automatic configuration (irace)
+ Flexible algorithmic framework (AutoMOEA)
= Automatic design of state-of-the-art MOEAs
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AutoMOEA: Automatic Design

Automatic configuration (irace)
+ Flexible algorithmic framework (AutoMOEA)
= Automatic design of state-of-the-art MOEAs

BuildMatingPool Replacement

SetPart Quality Diversity SetPart Quality Diversity

MOGA rank — niche-sharing — — —
NSGA-II depth — crowding dist. depth — crowding dist.
SPEA2 strength — kNN strength — kNN

IBEA — binary indicator — — binary ind. —
HypE — Ih

H — depth Ih
H —

SMS-EMOA — — — depth-rank I1
H —

DTLZ 2-obj — — crowding depth-rank Iϵ sharing
DTLZ 3-obj depth-rank Iϵ kNN rank I1

H sharing
DTLZ 5-obj rank I1

H crowding depth I1
H —

WFG 2-obj rank — crowding depth-rank I1
H —

WFG 3-obj count I1
H crowding strength I1

H sharing
WFG 5-obj count Ih

H crowding — I1
H —
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Experimental results
DTLZ WFG

2-obj 3-obj 5-obj 2-obj 3-obj 5-obj
∆R = 126 ∆R = 127 ∆R = 107 ∆R = 169 ∆R = 130 ∆R = 97

AutoD2 AutoD3 AutoD5 AutoW2 AutoW3 AutoW5

(1339) (1500) (1002) (1692) (1375) (1170)

SPEA2D2 IBEAD3 SMSD5 SPEA2W2 SMSW3 SMSW5
(1562) (1719) (1550) (2097) (1796) (1567)
IBEAD2 SMSD3 IBEAD5 NSGA-IIW2 IBEAW3 IBEAW5
(1940) (1918) (1867) (2542) (1843) (1746)

NSGA-IID2 HypED3 SPEA2D5 SMSW2 SPEA2W3 SPEA2W5
(2143) (2019) (2345) (2621) (2600) (2747)
HypED2 SPEA2D3 NSGA-IID5 IBEAW2 NSGA-IIW3 NSGA-IIW5
(2338) (2164) (2346) (2777) (3315) (3029)
SMSD2 NSGA-IID3 HypED5 HypEW2 HypEW3 MOGAW5
(2406) (2528) (2674) (2851) (3431) (4268)

MOGAD2 MOGAD3 MOGAD5 MOGAW2 MOGAW3 HypEW5
(2970) (2851) (2915) (4320) (4540) (4373)
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AutoMOEA: Automatic Design

Automatic configuration (irace)
+ Flexible algorithmic framework (AutoMOEA)
= Automatic design of state-of-the-art MOEAs

Exactly!
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Indicators may be conflicting [Bezerra et al., 2020a]
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Use Case: Multi-modal multi-objective optimization [Rook et al.,’22]

Decision space Objective space Decision space Objective space

MMMOPS have Multiple global and local optima.
Goal: Obtain diversity in decision space and convergence towards Pareto front.
AAC for diversity (SP) results in a loss on convergence (HV) and vice versa.

HIGA-MO
MOEA/D

MOGSA
MOLE

NSGA-II

Omni-Optimizer

SMS-EMOA

Solver
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Relative loss of HV of by configuring on SP
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Interactive Automatic Design

Juan Esteban Diaz and Manuel López-Ibáñez,
Incorporating decision-maker’s preferences into the automatic configuration of
bi-objective optimisation algorithms,
European Journal of Operational Research, 289:3, 2021.
https://doi.org/10.1016/j.ejor.2020.07.059
✰ EJOR Editors’ Choice Article, January 2021

34
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Interactively Tuning the value of ℓ in W-RoTS [Diaz & López-Ibáñez, 2021]

Use the weighted hypervolume to guide
the automatic algorithm configuration of a bi-objective optimizer
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(1) The DM chooses one side, e.g., ℓ = 1
(2) Compute regions R in favour
(2) Create weighted hypervolume (WHV) based on positive EAF differences
(3) Tune ℓ ∈ [1, 200] using irace guided by WHV (budget = 500 runs of W-RoTS)
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Interactively Tuning the value of ℓ in W-RoTS [Diaz & López-Ibáñez, 2021]
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Interactively Tuning the value of ℓ in W-RoTS [Diaz & López-Ibáñez, 2021]
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Part III

AAC for Improving Anytime Behaviour
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Automatically Improving the Anytime Behavior of Optimization Algorithms with irace

Manuel López-Ibáñez and Thomas Stützle.
Automatically improving the anytime behaviour of optimisation algorithms.
European Journal of Operational Research, 2014. doi: 10.1016/j.ejor.2013.10.043.
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Anytime Algorithm [Dean & Boddy, 1988]

May be interrupted at any moment and returns a solution

Keeps improving its solution until interrupted

Eventually finds the optimal solution

Good Anytime Behavior [Zilberstein, 1996]

Algorithms with good “anytime” behavior produce as high
quality result as possible at any moment of their execution.
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Max-Min Ant System w/o LS
Solution-quality vs. time (SQT) curve / Performance profile
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Algorithms with good “anytime” behaviour produce as high quality
result as possible at any moment of their execution [Zilberstein, 1996]
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Algorithms with good “anytime” behaviour produce as high quality
result as possible at any moment of their execution [Zilberstein, 1996]
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Improving Anytime Behaviour

How to improve the anytime behaviour of MMAS?

☞ Online parameter variation:

Start with 1 ant, add 1 ant every iteration until 400 ants
Start with β = 10, switch to β = 2 after 100 iterations
. . .

✘ More parameters!

✘ How to compare SQT curves? (Average solution quality plotted over time)
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Classical (Human-intensive) Approach

1 Devise many online strategies for parameter variation

2 Run lots of experiments

3 Visually compare SQT plots

After one year and a master thesis: [Maur et al., 2010]
✔ Strategies for varying ants, β, or q0 that significantly improve the anytime

behaviour of MMAS on the TSP.
✘ Extremely time consuming
✘ Subjective / Bias
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Automatically Improving the Anytime Behavior

Online parameter control
✘ Which parameters to adapt? How? ⇒ More parameters!
✔ Use irace (offline) to select the best parameter control strategies

Improve Anytime Behavior
✔ More robust to different termination criteria
✘ How can irace compare SQT curves?
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Automatically Improving the Anytime Behavior

time

s
o
lu

ti
o
n
 c

o
s
t

A

time

s
o
lu

ti
o
n
 c

o
s
t

A

B

time

s
o
lu

ti
o
n
 c

o
s
t

A

B

C

46



Automatically Improving the Anytime Behavior

time

s
o
lu

ti
o
n
 c

o
s
t

A

time

s
o
lu

ti
o
n
 c

o
s
t

A

B

time

s
o
lu

ti
o
n
 c

o
s
t

A

B

C

46



Automatically Improving the Anytime Behavior

time

s
o
lu

ti
o
n
 c

o
s
t

A

time

s
o
lu

ti
o
n
 c

o
s
t

A

B

time

s
o
lu

ti
o
n
 c

o
s
t

A

B

C

46



Automatically Improving the Anytime Behavior
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Automatically Improving the Anytime Behavior
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Automatically Improving the Anytime Behavior

irace + hypervolume = automatically improving the anytime behavior of
optimization algorithms

1 Run configuration until large stopping time
2 Compute hypervolume of SQT curve
3 Evaluate anytime behavior according to hypervolume

Hypervolume (multi-objective) optimization
✔ Objectively defined comparison
✔ Well-known performance measure

Automatic configuration using irace
✔ Most effort done by the computer
✔ Best configurations selected by the computer: Unbiased
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Scenario #1: Experimental comparison
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Scenario #2: SCIP [López-Ibáñez & Stützle, 2014]

SCIP: an open-source mixed integer programming (MIP) solver
[Achterberg, 2009]

200 parameters controlling search, heuristics, thresholds, . . .

Benchmark set: Winner determination problem for
combinatorial auctions [Leyton-Brown et al., 2000]
1 000 training + 1 000 testing instances

Single run timeout: 300 seconds

irace budget (maxExperiments): 5 000 runs
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Scenario #2: SCIP [López-Ibáñez & Stützle, 2014]
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Hypervolume as a measure of anytime?

What about the area under the target-based ECDFs? COCO [Hansen et al., 2020]
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☞ It is the same∗!
∗ When the number of targets grows to infinity

and except for a multiplication factor.
[López-Ibáñez, Vermetten, Dréo & Doerr, 2025]

What if the user gives the stopping criterion before running?
☞ Then, tuning for various runtimes may be better [Branke & Elomari, 2011]
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Part IV

AAC for Multiple Performance Objectives
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In this part you will learn . . .

in which situations you can (and should) use MO-AAC,
which approaches you can use for MO-AAC, and
how to properly deploy MO-AAC in your experiments.
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When to use MO-AAC?

Prevent premature commitments towards preferences.
Analyse trade-offs between objectives.

Objectives to consider
Performance measures: > 100
Robustness / stability: Variance
Resources: Wall time, CPU time, Memory usage
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When to use MO-AAC?

Start More than
one objective?

Conflicting
objectives?

Interested in
only one config?

Time vs
Performance?

MO-AACYes Yes Yes

Yes

No

SO-AAC

No

No
(scalarise / HV)

Anytime AAC
Yes

Yes, but do it afterwards
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Multi-Objective AAC

Find a set of configurations for an algorithm that approaches the trade-off
of the overall performance

Formulated as multi-objective optimisation problem:

Θ∗ = {θ ∈ Θ | ∄θ
′ ∈ Θ \ {θ} : p(Aθ

′ , I) ≺ p(Aθ, I)}
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Which methods to use?

Desired properties:
Take multi-objective relations and challenges into account.
Exploit evaluation on multiple problem instances.

Existing methods:
Off-the-shelf EMOAs.
ParEGO: scalarisation with varying weights in combination with (SO)-AAC
methods. [Knowles, 2006]
Specialised MO-AAC frameworks:

MO-ParamILS,
MO-SMAC,
S-, I/S-, SPRINT-race.

59



MO-AAC Methods – Off-the-shelf EMOAs

✔ Many algorithms to choose from.
✘ Usually no good support for complex parameter spaces

(mixed-type and dependencies/constraints).
✘ No mechanisms to efficiently handle the evaluation budget when configuring for

multiple problem instances.
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MO-AAC Methods – ParEGO [Knowles, 2006]

Scalarize the objectives when interacting with a surrogate model but treat actual
evaluation in the MO context.
Vary the scalarisation weights each repetition.

✘ Does not work well for concave trade-offs.

0 1 2

0

2

4

y1

y 2

Convex

0 1 2

−6

−4

−2

0

2

y1

Concave

61



MO-AAC Methods – MO-ParamILS [Blot et al., 2016]

Extension of ParamILS; Iterated Local Search (ILS) and keeps non-dominated
configurations in an archive. [Hutter et al., 2007, 2009]

✔ Has an MO intensification1 mechanism that works with ILS.
✘ Requires a discrete parameter space.

1Increasingly evaluate configurations on instances and stop them early to prevent wasteful
computations.
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MO-AAC Methods – MO-SMAC [Rook et al., 2024]
Pure MO extension of SMAC3 [Lindauer et al., 2022] (SMAC3 also supports
ParEGO).
Has a surrogate model for each objective and searches for configurations that
complement the existing solution set to most by their improvement on the
Hypervolume.

✔ Has an MO intensification mechanism
✔ Can handle complex parameter spaces and also does intensification.

Get new
configurationStart Intensify Budget left? Return in-

cumbent

Runhistory

Fit Empirical
Performance

Model (EPM)
Generate

candidates
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MO-AAC Methods – S-, SPRINT-, I/S race [Zhang et al., 2013; Miranda et al.,
2015; Zhang et al., 2016]

Replaces the F-test in F-race with a new statistical test and races to obtain a ND
set of configurations.

✘ Requires substantial evaluation budgets.
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MO-AAC Methods

Which ones is best? →Just as with EMOA, there is not one that rules them all.
Also depends on configuration budgets and used programming language.
We like MO-SMAC though ;)
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Best-practices for MO-AAC

We got a problem scenario

We got an MO-AAC method
What elso to consider? . . . The setup!
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Most of the regular AAC best-practices still apply

Perform multiple runs of the configurator due to their stochastic behaviour.
Carefully think the parameter configuration space through

What are good bounds for parameters? Open problem!
Run on the same hardware and software + check filesystem throughput
Use (various) train-test splits; configure on training set; select best from all runs
based on training set; report performance on test set.
Report configurations found when configuring on whole instance set.
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Best-practices especially for MO-AAC

How to quantify the performance of the outcome?
Performance indicators, like Hypervolume.
Decision maker’s statisfaction.

Configuration sets found over multiple runs can be complementary to each other!
Select those that are non-dominating on their performance on the training set.
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Aggregating results from multiple independent runs

SO-AAC

Run 1 θ1

...

Run n θn

θ∗

MO-AAC

Run 1 {θ1,1, . . . , θ1,4}

...

Run n {θn,1, . . . , θn,8}

{θ1,1, . . . , θn,5}
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Use-cases
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Use-case 1: Multi-Modal MOPs [Preuß et al., 2024]

Decision space Objective space Decision space Objective space

Recall the loss in diversity (SP) and convergence (HV) from [Rook et al., 2022]

Can we mitigate the trade-off between SP and HV with MO-AAC?
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How does the trade-off between SP and HV look like?
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Use-case 2: Sparse Neural Networks
NNs with sparsely connected layers; optimised during training. [Mocanu et al., 2018]

Experiment: Observe performance of various sparsity levels with same model.
Original claim: Sparse NNs are more efficient and perform same as dense NNs.

MO-AAC experiment: Configure model for performance and efficiency.
Observation: Small dense networks perform equally and are much more efficient.
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Experiment: Observe performance of various sparsity levels with same model.
Original claim: Sparse NNs are more efficient and perform same as dense NNs.

MO-AAC experiment: Configure model for performance and efficiency.
Observation: Small dense networks perform equally and are much more efficient.

Early commitment does not show the actual trade-off.
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In this part you learned . . .

in which situations you can (and should) use MO-AAC,
which approaches you can use for MO-AAC, and
how to properly deploy MO-AAC in your experiments.
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Part V

Wrap-up
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Recap

Part II: AAC for Multi-Objective Optimization Algorithms

Part III: AAC for Improving Anytime Behaviour

Part IV: AAC for Multiple Performance Objectives
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Considerations

AAC is systematic, but not exhaustive → no guarantee of optimal solution.
AAC gives equal opportunity to algorithms to behave at their best for a given
problem.
What about ensembles of different configurators (or configurations of configurators)?
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Take aways

Do not use default parameters. Always configure.
AAC does not only optimize, it is also an analysis tool.
Who is configuring the configurator?

Links to configurator frameworks:
irace https://mlopez-ibanez.github.io/irace/

MO-SMAC https://github.com/jeroenrook/SMAC3/tree/mosmac-anon2

2Soon to be merged with SMAC3.
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Thomas Stützle, Leslie Pérez Cáceres, Prasanna Balaprakash, Leonardo Bezerra, Mauro Birattari,
Jérémie Dubois-Lacoste, Alberto Franzin, Holger H. Hoos, Frank Hutter, Kevin Leyton-Brown,
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T. Tušar and B. Filipič. Differential evolution versus genetic algorithms in multiobjective optimization. In S. Obayashi et al., editors, Evolutionary Multi-criterion
Optimization, EMO 2007, volume 4403 of Lecture Notes in Computer Science, pages 257–271. Springer, Heidelberg, Germany, 2007.

T. Zhang, M. Georgiopoulos, and G. C. Anagnostopoulos. S-Race: A multi-objective racing algorithm. In C. Blum and E. Alba, editors, Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2013, pages 1565–1572. ACM Press, New York, NY, 2013. ISBN 978-1-4503-1963-8.

T. Zhang, M. Georgiopoulos, and G. C. Anagnostopoulos. Multi-objective model selection via racing. IEEE Transactions on Cybernetics, 46(8):1863–1876, 2016.

S. Zilberstein. Using anytime algorithms in intelligent systems. AI Magazine, 17(3):73–83, 1996. doi: 10.1609/aimag.v17i3.1232.

E. Zitzler and S. Künzli. Indicator-based selection in multiobjective search. In X. Yao et al., editors, Parallel Problem Solving from Nature – PPSN VIII, volume 3242 of
Lecture Notes in Computer Science, pages 832–842. Springer, Heidelberg, Germany, 2004.

E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In K. C. Giannakoglou, D. T.
Tsahalis, J. Periaux, K. D. Papaliliou, and T. Fogarty, editors, Evolutionary Methods for Design, Optimisation and Control, pages 95–100. CIMNE, Barcelona, Spain,
2002. ISBN 84-89925-97-6.

E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert da Fonseca. Performance assessment of multiobjective optimizers: an analysis and review. IEEE
Transactions on Evolutionary Computation, 7(2):117–132, 2003. doi: 10.1109/TEVC.2003.810758.

E. Zitzler, L. Thiele, and J. Bader. On set-based multiobjective optimization. IEEE Transactions on Evolutionary Computation, 14(1):58–79, 2010.
doi: 10.1109/TEVC.2009.2016569.

84

https://doi.org/10.1609/aimag.v17i3.1232
https://doi.org/10.1109/TEVC.2003.810758
https://doi.org/10.1109/TEVC.2009.2016569


Back-up slides

irace, MO-SMAC working

85



The irace Package
Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres,
Thomas Stützle, and Mauro Birattari.
The irace package: Iterated Racing for Automatic Algorithm Configuration.
Operations Research Perspectives, 3:43–58, 2016. doi: 10.1016/j.orp.2016.09.002
https://mlopez-ibanez.github.io/irace/

Implementation of Iterated Racing in R
Goal 1: Flexible

Goal 2: Easy to use

R package available at CRAN (GNU/Linux, Windows, OSX)
http://cran.r-project.org/package=irace

Use it through the command-line: (see irace --help)
irace --max-experiments 1000 --param-file parameters.txt

✔ No knowledge of R needed
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The irace Package

Training
instances

Parameter
space

Configuration
scenario

targetRunner

calls with θ,i returns c(θ,i)
iraceirace
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The irace Package: Instances

TSP instances
$ dir Instances/
3000-01.tsp 3000-02.tsp 3000-03.tsp ...

Continuous functions
$ cat instances.txt
function=1 dimension=100
function=2 dimension=100
...

Parameters for an instance generator
$ cat instances.txt
I1 --size 100 --num-clusters 10 --sym yes --seed 1
I2 --size 100 --num-clusters 5 --sym no --seed 1
...

Script / R function that generates instances
☞ if you need this, tell us!
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The irace Package: Parameter space

Categorical (c), ordinal (o), integer (i) and real (r)

Subordinate parameters (| condition)

Logarithmic scale (,log) (irace 3.0)

$ cat parameters.txt

# Name Label/switch Type Domain Condition
LS "--localsearch " c (SA, TS, II)
rate "--rate=" o (low, med, high)
population "--pop " i,log (1, 100)
temp "--temp " r (0.5, 1) | LS == "SA"

For real parameters, number of decimal places is controlled by option digits
(--digits)
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The irace Package: Options

maxExperiments (maxTime): maximum number of runs
(or overall time) of the target algorithm (tuning budget)

testType: either F-test or t-test
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The irace Package: target-runner

A script/program that calls the software to be tuned:

./target-runner configID instanceID seed instance configuration

e.g. :
./target-runner 2 1 1234567 3000-01.tsp --localsearch SA ...

An R function

Flexibility: If there is something you cannot tune, let us know!
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The irace Package: Other features

1 Initial configurations (e.g., default configuration)

2 Parallel evaluation: multiple CPUs, MPI, batch job clusters (SGE, PBS, Torque,
Slurm)

3 Forbidden configurations (+ rejection):
popsize < 5 & LS == "SA"

4 Recovery file: allows resuming an interrupted irace run

5 Test instances

6 Repair configurations before being evaluated

7 Adaptive capping (for runtime minimization)
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The irace Package

Last version 3.5 (23/10/2022)

A detailed user-guide / tutorial:
https://cran.r-project.org/web/packages/irace/vignettes/irace-package.pdf

GitHub: https://github.com/MLopez-Ibanez/irace

Google group
https://groups.google.com/d/forum/irace-package
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An overview of applications of irace
Parameter tuning

Exact MIP solvers (CPLEX, SCIP [López-Ibáñez & Stützle, 2014])
single-objective optimization metaheuristics
multi-objective optimization metaheuristics
anytime optimization (improve time-quality trade-offs)
command-line flags of GCC compiler [Pérez Cáceres et al., 2017]

Automatic algorithm design
From a flexible framework of algorithm components
From a grammar description[Mart́ın-Santamaŕıa et al., 2024]

Machine learning
Automatic model selection for survival analysis [Lang et al., 2014]

mlr R package [Bischl et al., 2013, 2016]

Design of control software for robots [Francesca et al., 2015]

Theoretical research [Friedrich et al., 2018; Dang & Doerr, 2019; Hall et al., 2019]

1 919 citations in Google Scholar, 189 000 downloads
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iraceplot: Opening the black-box

https://auto-optimization.github.io/iraceplot/

Interactive HTML post-configuration report

Summary statistics per instance /
per configuration / per iteration

Interactive visualizations

Ablation report
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SMAC → MO-SMAC

Get new
configurationStart Intensify Budget left? Return in-

cumbent

Runhistory

Fit Empirical
Performance

Model (EPM)
Generate

candidates
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Modification 1: Intensification

Incumbent is a population of (trade-off) configurations
Running on instances continues until configuration is closest θinc ∈ Θinc
dominates the challenger
More configurations in incumbent → Less runs on individual incumbent configurations

Trade-off!
Controlled by new parameter: max population size

θ added to Θinc if not dominated by any incumbent configuration.
Remove incumbent configurations that are
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Modification 1: Intensification

Run θ on
instance(s) Worse than incumbent?

Run on all instances?

Run θinc
on instance

Accept θ
as new θinc

no

yes

no yes
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Modification 1: Intensification – why the closests?

Assume a fixed probability p of making a false decision
Rejecting a promising configuration

With an incumbent of size m this probability grows: 1 − (1 − p)m

Hence choose one θinc from Θinc

99



Modification 2: Empirical performance model

Runhistory

EPM
Random Forest

EPM
Random Forest

Acquisition
function
PHVI

Random Search

Local Search

Rank and
interleave

configurations
∀ obj.
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Modification 2: Empirical performance model

single EPM → 1 EPM for each objective
Expected Hypervolume Improvement [Yang et al.,2019]

Does not work well with few samples
Expensive to compute in > 3 dimensions
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Modification 2: Empirical performance model

single EPM → 1 EPM for each objective
Expected Hypervolume Improvement [Yang et al.,2019]

Does not work well with few samples
Expensive to compute in > 3 dimensions

Predicted Hypervolume Improvement (PHVI)
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