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f:{0,1}* - R
» Pseudo-Boolean optimization

< Global optimum often 1™

» Run time analysis
oS

Number of evaluations of f until

a global optimum is sampled

I I I cee i » Favorable albeit not necessary model

» Frequency vector p
» P; ... probability to samplealati
(green mass)

[Ben Jedidia,

0 Multi-valued analyses
-.i_:_ Doerr, K.”24]

» DOI: 10.1016/j.tcs.2024.114622

» Runtime Analysis of a Multi-Valued Compact PPSN
Genetic Algorithm on Generalized OneMax 2024,
[Adak, Witt'24]
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» What happens if the samples are not informative?
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» We wish to be low for at least ©(7) iterations

_ 1. s 1
» Pp; covers a distance of at most - with probability at least 1 — exp (—G) (Var.T)>

. » ith high
®  Choose algorithm parameters such that Guarantee with hig
probability

» Several times derived before, not fully rigorously

» Smart-restart strategy for EDAs
% Choose some variance and run the EDA for ® (ﬁ) iterations

< If not happy, halve the variance, repeat the algorithm

» The trick carries over to weak preferences of bit values
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CGA [Droste’06; Lengler, Sudholt, [Hasendhrl, Sutton’18;
Witt'18; Sudholt, Witt'19] Doerr'21; Witt'23] [Droste’06; Witt'18]
UMDA [Dang, Lehre, Nguyen'18; [Dang, Lehre, Nguyen'18; n
Witt'19; K., Witt'20] Doerr, K.”21] [Dang, Lehre, Nguyen'18]

Also: (non-exhaustive)

» Analyses on nOise [Friedrich, K&tzing, K., Witt'17; Lehre, Nguyen’19; Lehre, Nguyen’21; Kotzing, Radhakrishnan'22]

» Analyses on deception iLehre, Nguyen'19; Doerr, k/21]

M

New EDAS Doerr, k20, Ajimakin, Devi23]

> Multi-valued EDAS zen sedidia, Doerr, k724: Adak, witt24]

>
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(®)

» Consider the potential p® == ¥, 1 (1 - p; ), which we aim to minimize ™' Potential holdsasecret

we will uncover soon
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cGA on OneMax (informative bits)

» We bound E [pgtﬂ) — pgt) | Pl@]

l

< The bits at position i are not always informative

» For simplicity, assume

m= When they are not informative, the expected change is 0 no bounds

» When are bits informative?

i@ 1100711110
+@ 0011200011
, - _

L Y

=:D

mm> Since ||5c(1)|1 — |5c(2)|1| > 2, position i is not informative

» Ignoring the case D = 1 does not

2
(t+1) ) | ,.() (t) (t) _ (t)
= E [pi —D; |p ] = Epi (1 —D; ) - Pr [D =0|p ] change the result asymptotically here
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cGA on OneMax (e sampling variance)

» How to bound Pr [D =0| p(t)]?

% LetX = Z \{l}x( )andY = Z €[n ]\{l}x

(2)

mm> X and Y follow independent Poisson-binomial distributions

» These are concentrated around their expectation within their standard deviation o

E[X]—-0o

EDDD

E[X]

E[X]+ o

DDDE

‘%/_/

Constant fraction of the probability mass
ininterval I := [E[X] —0..E[X] + o]

I

The probability of each outcomein I is very

roughly the same, that is,ﬁ ~ =

» Note thato = \/Var [X | p(t)] —

®
\/ Lepno®)” (1-2))

sampling variance
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Pr [D =0| p(t)] — Pr [X —v| p(t)] Jensen’sinequality: Y, a2 - (ZREL ak>2
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= . 2 2 (ZkEL ak)z
Zje[n—;] q; L ZkELak 2=
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Sjer ;)
> 7
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cGA on OneMax

» We have E[T] < K+/n under the assumption K € Q( E[T] logn)

< Solving for K yields K € Q(y/nlogn)

mm The cGA with K € Q(y/nlogn) maximizes OneMax in O(K+/n) iterations » And other mild assumptions,
in expectation, which is for minimal K. such as that K is polynomial

The constraint on K is due to the variance of a single frequency, and the factor n
0 can be traced back to the sampling variance!

» Almost matching lower bounds and matching lower bounds
exist

< Sudholt and Witt approximate the potential of the sum of frequencies via a
normal distribution

Jn
log(n) loglogn

» ForK €0 ( ) the run time is in Q(K/3n + nlogn) » Covers high genetic drift



UMDA on OneMax (with borders)

[Witt'18]

1.

The UMDA with u € Q(y/nlogn) and 2 = (1 4+ ©(1))u optimizes OneMax in
0(Ay/n) function evaluations in expectation. This is for minimal A.

» Low genetic drift.

» Holds with high probability
also without borders.

12



UMDA on OneMax (with borders)

[Witt'18]

1.

The UMDA with u € Q(y/nlogn) and 2 = (1 4+ ©(1))u optimizes OneMax in

0(Ay/n) function evaluations in expectation. This is

for minimal A.

The UMDA with u € Q(logn) N O(n*~¥) and 1 = (1 + ©(1))u optimizes

OneMax in O(An) function evaluations in expectation. This is
minimal A.

for

»

»

»

Low genetic drift.

Holds with high probability
also without borders.

High genetic drift.

Only holds with borders,
otherwise infinite even whp.

12



UMDA on OneMax (with borders)

witt18] 1. The UMDA with u € Q(y/nlogn) and 1 = (1 4+ ©(1))u optimizes OneMax in > Low genetic drift.
. . . . P . » Holds with high probability
0(Ay/n) function evaluations in expectation. This is for minimal A. 2loo without borders,

2. The UMDA with u € Q(logn) N O(n'~¥) and 1 = (1 + ©(1))u optimizes » High genetic drift.
OneMax in O(An) function evaluations in expectation. This is for » Only holds with borders,
minimal A. otherwise infinite even whp.

[Ibzzr;én,m] The UMDA with i € Q(logn) N 0(y/n) and A = (1 + Q(l)),u optimizes OneMax High genetic drift,
in 0(An) function evaluations in expectation. This is for minimal A.

12



UMDA on OneMax (with borders)

witt18] 1. The UMDA with u € Q(y/nlogn) and 1 = (1 4+ ©(1))u optimizes OneMax in
0(Ay/n) function evaluations in expectation. This is for minimal A.

2. The UMDA with u € Q(logn) N O(n'~¥) and 1 = (1 + ©(1))u optimizes

OneMax in O(An) function evaluations in expectation. This is for
minimal A.
['tlehre, . The UMDA with i € Q(logn) N 0(y/n) and A = (1 + Q(l)),u optimizes OneMax
Javen in 0(An) function evaluations in expectation. This is for minimal A.

» Analysis by Witt very similar to the cGA, but some steps are vastly different

< It analogously holds that E [pg”l) — pgt) | p(t)] = p@ (1 — pl@), but for different

l
reasons, involving 1st- and 2nd-class individuals

»

»

»

Low genetic drift.

Holds with high probability
also without borders.

High genetic drift.

Only holds with borders,
otherwise infinite even whp.

» High genetic drift.

12



UMDA on OneMax (with borders)

witt18] 1. The UMDA with u € Q(y/nlogn) and 1 = (1 4+ ©(1))u optimizes OneMax in
0(Ay/n) function evaluations in expectation. This is for minimal A.

2. The UMDA with u € Q(logn) N O(n'~¥) and 1 = (1 + ©(1))u optimizes
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['tlehre, . The UMDA with i € Q(logn) N 0(y/n) and A = (1 + Q(l)),u optimizes OneMax
Javen in 0(An) function evaluations in expectation. This is for minimal A.

» Analysis by Witt very similar to the cGA, but some steps are vastly different

< It analogously holds that E [pg”l) — pgt) | p(t)] = p@ (1 — pl@), but for different

l
reasons, involving 1st- and 2nd-class individuals

» Analysis by Lehre and Nguyen simpler, utilizing a level-based method
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