Theory of Estimation-of-Distribution Algorithms

PPSN 2024 Tutorial

» **What** are they?

- » **What** are they?
- » **Focus** on the most commonly theoretically studied ones

(Mathematical rigor)

- » **What** are they?
- » **Focus** on the most commonly theoretically studied ones

- » **What** are they?
- » **Focus** on the most commonly theoretically studied ones

(Mathematical rigor)

» **What** is studied?

- » **What** are they?
- » **Focus** on the most commonly theoretically studied ones

(Mathematical rigor)

- » **What** is studied?
- » **Selection** of important results
	- **Understand** the basic idea

- » **What** are they?
- » **Focus** on the most commonly theoretically studied ones

(Mathematical rigor)

- » **What** is studied?
- » **Selection** of important results
	- \bullet **Understand** the basic idea

»**Depth over breadth**

IN

Martin S. Krejca

martin.krejca@polytechnique.edu

martin.krejca@polytechnique.edu

Carsten Witt

Martin S. Krejca

martin.krejca@polytechnique.edu

च़

(more **breadth**)

Carsten Witt

Martin S. Krejca

martin.krejca@polytechnique.edu

₹

DOI: **10.1145/3377929.3389888**

(more **breadth**)

Carsten Witt

Sunday, Sep. 15 9:30–12:30

Estimation-of-Distribution Algorithms

$$
\begin{array}{c|cccc}\nx_1 & x_2 & x_3 & x_4 & x_5 \\
\hline\n0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 2 \\
\vdots & \vdots\n\end{array}
$$

$$
\prod_{i \in [\text{#vars}]} (\text{#vals}(x_i)) - 1
$$

$$
\begin{array}{c|cccc}\nx_1 & x_2 & x_3 & x_4 & x_5 \\
\hline\n0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 2\n\end{array}
$$

$$
\prod_{i \in [\text{#vars}]} (\text{#vals}(x_i)) - 1
$$

compressed, directed

 x_1 x_2 x_3 x_4 x_5 $\mathbf{0}$ Ω $\boldsymbol{0}$ $\boldsymbol{0}$ $\overline{0}$ $\overline{0}$ $\boldsymbol{0}$ $\overline{0}$ $\overline{0}$ $\mathbf{1}$ \bigcirc $\overline{0}$ $\overline{0}$ $\overline{2}$ \bigcap $\ddot{\cdot}$ $\ddot{}$

$$
\prod_{i \in [\text{#vars}]} (\text{#vals}(x_i)) - 1
$$

compressed, directed

$$
\begin{array}{c|cccc}\nx_1 & x_2 & x_3 & x_4 & x_5 \\
\hline\n0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 2 \\
\vdots\n\end{array}
$$

1 2 …

$$
\Pi_{i \in [\text{Hvars}]}(\text{Hvals}(x_i)) - 1
$$

 $\sum_{i \in [\text{Itvars}]} (\text{Itvals}(x_i) - 1) \prod_{y \in \text{pred}(x_i)} \text{Itvals}(y)$ x_1 x_2 $\frac{x_2}{x_3}$ $0 \qquad 0$ $0₀$ …1 \cup 1 2 \cup 2 \vdots … …

compressed, directed

$$
\begin{array}{c|cccc}\nx_1 & x_2 & x_3 & x_4 & x_5 \\
\hline\n0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 2 \\
\vdots\n\end{array}
$$

$$
\Pi_{i \in [\text{Hvars}]}(\text{Hvals}(x_i)) - 1
$$

compressed, directed

$$
\begin{array}{c|cccc}\nx_1 & x_2 & x_2 & x_3 \\
\hline\n0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
2 & 2 & 0 & 2\n\end{array} \dots
$$
\n
$$
\vdots \qquad \vdots \qquad \vdots
$$

 \bullet

$$
\sum_{i \in [\text{Hvars}]} (\text{Hvals}(x_i) - 1) \prod_{y \in \text{pred}(x_i)} \text{Hvals}(y)
$$

$f: \{0,1\}^n \rightarrow \mathbb{R}$

» Pseudo-Boolean optimization

$f: \{0,1\}^n \rightarrow \mathbf{R}$

- » Pseudo-Boolean optimization
	- Global optimum often 1^n

$f: \{0,1\}^n \rightarrow \mathbf{R}$

- » Pseudo-Boolean optimization
	- Global optimum often 1^n

$f: \{0,1\}^n \rightarrow \mathbf{R}$

- » Pseudo-Boolean optimization
	- **↓** Global optimum often 1^n

» Frequency vector p

$f: \{0,1\}^n \rightarrow \mathbf{R}$

- » Pseudo-Boolean optimization
	- \triangleleft **Global optimum** often 1^n

- » *Frequency* vector
- » $p_i \dots$ probability to sample a 1 at i (green mass)

$f: \{0,1\}^n \rightarrow \mathbf{R}$

- » Pseudo-Boolean optimization
	- \triangleleft **Global optimum** often 1^n

- » *Frequency* vector
- » $p_i \dots$ probability to sample a 1 at i (green mass)

$f: \{0,1\}^n \to \mathbf{R}$

- » Pseudo-Boolean optimization
	- \triangleleft **Global optimum** often 1^n

- » *Frequency* vector
- » p_i ... probability to sample a 1 at i (green mass)

Multi-valued analyses

$f: \{0,1\}^n \to \mathbf{R}$

- » Pseudo-Boolean optimization
	- \triangleleft **Global optimum** often 1^n

- » *Frequency* vector
- » $p_i \dots$ probability to sample a 1 at i (green mass)

Multi-valued analyses

» DOI: **10.1016/j.tcs.2024.114622**

» *Runtime Analysis of a Multi-Valued Compact Genetic Algorithm on Generalized OneMax*

[Adak, Witt'24]

$f: \{0,1\}^n \to \mathbf{R}$

- » Pseudo-Boolean optimization
	- \triangleleft **Global optimum** often 1^n

- » *Frequency* vector
- » $p_i \dots$ probability to sample a 1 at i (green mass)

- » **Run time** analysis
	- \triangleleft Number of evaluations of f until a global optimum is sampled

Multi-valued analyses

- » DOI: **10.1016/j.tcs.2024.114622**
- » *Runtime Analysis of a Multi-Valued Compact Genetic Algorithm on Generalized OneMax*

[Ben Jedidia, Doerr, K.'24]

[Adak, Witt'24]

$f: \{0,1\}^n \to \mathbf{R}$

- » Pseudo-Boolean optimization
	- \triangleleft **Global optimum** often 1^n

» *Frequency* vector

Multi-valued analyses

» $p_i \dots$ probability to sample a 1 at i (green mass)

» DOI: **10.1016/j.tcs.2024.114622**

- » **Run time** analysis
	- \triangleleft Number of evaluations of f until a global optimum is sampled

» Favorable albeit not necessary model

» *Runtime Analysis of a Multi-Valued Compact Genetic Algorithm on Generalized OneMax*

[Adak, Witt'24]

Updating a Frequency (commonly)

Updating a Frequency (commonly)

$$
\sum_{\text{drift}} \mathbf{E}\left[\boldsymbol{p}_i^{(t+1)} - \boldsymbol{p}_i^{(t)} \mid \boldsymbol{p}^{(t)}\right]
$$

7

drift

$$
\mathcal{E}
$$

 $\mathrm{E}\left[\boldsymbol{p}_i^{(t+1)}-\boldsymbol{p}_i^{(t)} \mid \boldsymbol{p}^{(t)}\right]$ » Estimating the drift, estimates the expected time that the frequency passes a specific value the frequency passes a specific value

7

7

» **What** happens if the samples are **not** informative?

 $\bm{p}^{(t)}_i$

» **What** happens if the samples are **not** informative?

 $\boldsymbol{\ast}$ Each $\left\{\boldsymbol{x}_{i}^{\text{U}}\right\}$ and $\left\{\widehat{x}_i^{(k)}\right\}$ κ∈լµ follows the same distribution \overline{a} Can happen regularly

during a run

- » **What** happens if the samples are **not** informative?
	- $\boldsymbol{\ast}$ Each $\left\{\boldsymbol{x}_{i}^{\text{U}}\right\}$ and $\left\{\widehat{x}_i^{(k)}\right\}$ κ∈լµ follows the same distribution
- » Can happen regularly during a run

 $\bm{p}^{(t}_{i}$

III Removes the tricky situation

- » **What** happens if the samples are **not** informative?
	- $\boldsymbol{\ast}$ Each $\left\{\boldsymbol{x}_{i}^{\text{U}}\right\}$ and $\left\{\widehat{x}_i^{(k)}\right\}$ κ∈լµ follows the same distribution
- » Can happen regularly during a run

III Removes the tricky situation

$$
\mathrm{E}\left[\boldsymbol{p}_i^{(t+1)}\mid \boldsymbol{p}^{(t)}\right]=\boldsymbol{p}_i^{(t)}
$$

balanced

» Typical property of univariate EDAs

- » **What** happens if the samples are **not** informative?
	- $\boldsymbol{\ast}$ Each $\left\{\boldsymbol{x}_{i}^{\text{U}}\right\}$ and $\left\{\widehat{x}_i^{(k)}\right\}$ κ∈լµ follows the same distribution
- » Can happen regularly during a run

$$
\mathrm{E}\left[\boldsymbol{p}_i^{(t+1)}\mid \boldsymbol{p}^{(t)}\right]=\boldsymbol{p}_i^{(t)}
$$

balanced

» Typical property of univariate EDAs

» Due to random fluctuations; despite a clear signal

- » **What** happens if the samples are **not** informative?
	- $\boldsymbol{\ast}$ Each $\left\{\boldsymbol{x}_{i}^{\text{U}}\right\}$ and $\left\{\widehat{x}_i^{(k)}\right\}$ κ∈լµ follows the same distribution
- » Can happen regularly during a run

» **What** happens if the samples are **not** informative?

 $\boldsymbol{\ast}$ Each $\left\{\boldsymbol{x}_{i}^{\text{U}}\right\}$ and $\left\{\widehat{x}_i^{(k)}\right\}$ κ∈լµ follows the same distribution » Can happen regularly during a run

III Removes the tricky situation $\mathbb{E}\left[\boldsymbol{p}_i^{(t+1)} \mid \boldsymbol{p}^{(t)}\right] = \boldsymbol{p}_i^{(t)}$ we a Typical property of univariate EDAs balanced

 \mathbf{m} \rightarrow \mathbf{p}_i is a martingale and **approaches the borders quickly**

» Due to random fluctuations; despite a clear signal

» **How fast** does p_i cover distance $d \in [0,1]$?

❖ Genetic drift

» **What** happens if the samples are **not** informative?

III Removes the tricky situation

 $\boldsymbol{\ast}$ Each $\left\{\boldsymbol{x}_{i}^{\text{U}}\right\}$ and $\left\{\widehat{x}_i^{(k)}\right\}$ κ∈լµ follows the same distribution

 $\mathbb{E}\left[\boldsymbol{p}_i^{(t+1)} \mid \boldsymbol{p}^{(t)}\right] = \boldsymbol{p}_i^{(t)}$ we a Typical property of univariate EDAs

 \mathbf{m} \rightarrow \mathbf{p}_i is a martingale and **approaches the borders quickly**

» Can happen regularly during a run

-
- » Due to random fluctuations; despite a clear signal

Genetic drift

balanced

drift via variance ≈ \boldsymbol{d} V_c

$$
\frac{d}{\text{ar}\left[\boldsymbol{p}_i^{(t+1)} \mid \boldsymbol{p}^{(t)}\right]} \quad_{[\mathbb{K}^{[19]} }
$$

» **What** happens if the samples are **not** informative?

III Removes the tricky situation

 $\boldsymbol{\ast}$ Each $\left\{\boldsymbol{x}_{i}^{\text{U}}\right\}$ and $\left\{\widehat{x}_i^{(k)}\right\}$ κ∈լµ follows the same distribution » Can happen regularly during a run

 $\mathbb{E}\left[\boldsymbol{p}_i^{(t+1)} \mid \boldsymbol{p}^{(t)}\right] = \boldsymbol{p}_i^{(t)}$ we a Typical property of univariate EDAs balanced \mathbf{m} \rightarrow \mathbf{p}_i is a martingale and **approaches the borders quickly**

 \boldsymbol{d}

» Due to random fluctuations; despite a clear signal

❖ Genetic drift

 $\text{Var}\left[\boldsymbol{p}_i^{(t+1)} \mid \boldsymbol{p}^{(t)}\right]$ [K.'19] **concentrated** [Doerr, Zheng'20] » This hitting time is **concentrated**

[Harik, Lobo, Goldberg'99]

Compact Genetic Algorithm (cGA) Univariate Marginal Distribution Algorithm (UMDA)

[Mühlenbein, Paaß'96]

 \bigcirc_{\bigcirc} » $\lambda = 2$ samples each iteration [Harik, Lobo, Goldberg'99]

$$
\boldsymbol{p}_i^{(t+1)} = \boldsymbol{p}_i^{(t)} + \frac{1}{K} \Big(\widehat{\boldsymbol{x}}_i^{(1)} - \widehat{\boldsymbol{x}}_i^{(2)} \Big)
$$

hypometrical population size

$$
\boldsymbol{p}_i^{(t+1)} = \boldsymbol{p}_i^{(t)} + \frac{1}{K} \Big(\widehat{\boldsymbol{x}}_i^{(1)} - \widehat{\boldsymbol{x}}_i^{(2)} \Big)
$$

hypothesized population size

Compact Genetic Algorithm (cGA) Univariate Marginal Distribution Algorithm (UMDA)

» λ samples each iteration

$$
\boldsymbol{p}_i^{(t+1)} = \boldsymbol{p}_i^{(t)} + \frac{1}{K} \Big(\widehat{\boldsymbol{x}}_i^{(1)} - \widehat{\boldsymbol{x}}_i^{(2)} \Big)
$$

hypothesized population size

Compact Genetic Algorithm (cGA) Univariate Marginal Distribution Algorithm (UMDA) λ samples each iteration » Select $μ ≤ λ$ best samples, ranking $\frac{1}{2}$ $\frac{1}{2}$ ➠ [Harik, Lobo, Goldberg'99]
 $\begin{matrix}\n & & & \\
 & & \circ & \circ \\
 & & & \circ & \circ \\
 & & & \circ & \circ \\
 & & & & \circ & \circ\n\end{matrix}$ $\begin{matrix}\n\bullet & & & \bullet & \\
\bullet & & \bullet & & \bullet \\
\bullet & & \circ & \bullet & \\
 & & & \circ & \bullet\n\end{matrix}$ $\begin{matrix}\n\bullet & & & \\
\bullet & & \bullet & \bullet & \\
\bullet & & \bullet & \bullet & \bullet \\
\bullet & & & \circ & \bullet\n\end{matrix}$ $\begin{matrix}\n\bullet & & & \bullet & \\
\bullet & & \bullet & \bullet & \bullet & \\$

$$
\boldsymbol{p}_i^{(t+1)} = \boldsymbol{p}_i^{(t)} + \frac{1}{K} \Big(\widehat{\boldsymbol{x}}_i^{(1)} - \widehat{\boldsymbol{x}}_i^{(2)} \Big)
$$

hypothetical population size

$$
\boldsymbol{p}_i^{(t+1)} = \boldsymbol{p}_i^{(t)} + \frac{1}{K} \Big(\widehat{\boldsymbol{x}}_i^{(1)} - \widehat{\boldsymbol{x}}_i^{(2)} \Big)
$$

hypothetical population size

$$
\boldsymbol{p}_i^{(t+1)} = \frac{1}{\mu} \sum\nolimits_{k \in [\mu]} \widehat{\boldsymbol{x}}_i^{(k)}
$$

8

 $\frac{1}{\mu}\sum_{k\in[\mu]}\widehat{\mathbf{x}}_i^{(k)}$

$$
\boldsymbol{p}_i^{(t+1)} = \boldsymbol{p}_i^{(t)} + \frac{1}{K} \Big(\widehat{\boldsymbol{x}}_i^{(1)} - \widehat{\boldsymbol{x}}_i^{(2)} \Big)
$$

hypothetical population size

» Population-based incremental learning » 2-Max-Min ant system with iteration-best update [Neumann, Sudholt, Witt'10] [Baluja'**94**]

 $p_i^{(t+1)} = \frac{1}{u}$

 $\frac{1}{\mu}\sum_{k\in[\mu]}\widehat{\mathbf{x}}_i^{(k)}$

$$
\boldsymbol{p}_i^{(t+1)} = \boldsymbol{p}_i^{(t)} + \frac{1}{K} \Big(\widehat{\boldsymbol{x}}_i^{(1)} - \widehat{\boldsymbol{x}}_i^{(2)} \Big)
$$

hypothetical population size

» Population-based incremental learning » 2-Max-Min ant system with iteration-best update [Neumann, Sudholt, Witt'10] [Baluja'**94**]

 $p_i^{(t+1)} = \frac{1}{u}$

All are **balanced!** (starting with the uniform distribution)

Compact Genetic Algorithm (cGA) Univariate Marginal Distribution Algorithm (UMDA)

 $Var\left[\boldsymbol{p}_i^{(t+1)} \mid \boldsymbol{p}^{(t)}\right] = Var\left[\boldsymbol{p}_i^{(t)} + \frac{1}{K}\left(\widehat{\boldsymbol{x}}_i^{(1)} - \widehat{\boldsymbol{x}}_i^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right]$

$$
\operatorname{Var}\left[\boldsymbol{p}_i^{(t+1)} \mid \boldsymbol{p}^{(t)}\right] = \operatorname{Var}\left[\boldsymbol{p}_i^{(t)} + \frac{1}{K}\left(\widehat{\boldsymbol{x}}_i^{(1)} - \widehat{\boldsymbol{x}}_i^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right]
$$

$$
= \operatorname{Var}\left[\frac{1}{K}\left(\widehat{\boldsymbol{x}}_i^{(1)} - \widehat{\boldsymbol{x}}_i^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right]
$$

$$
\operatorname{Var}\left[\boldsymbol{p}_{i}^{(t+1)} \mid \boldsymbol{p}^{(t)}\right] = \operatorname{Var}\left[\boldsymbol{p}_{i}^{(t)} + \frac{1}{K}\left(\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \operatorname{Var}\left[\frac{1}{K}\left(\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \frac{1}{K^{2}} \cdot \operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)} \mid \boldsymbol{p}^{(t)}\right]
$$

$$
\operatorname{Var}\left[\boldsymbol{p}_{i}^{(t+1)} \mid \boldsymbol{p}^{(t)}\right] = \operatorname{Var}\left[\boldsymbol{p}_{i}^{(t)} + \frac{1}{K}\left(\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \operatorname{Var}\left[\frac{1}{K}\left(\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \frac{1}{K^{2}} \cdot \operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)} \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \frac{1}{K^{2}} \cdot \left(\operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(1)} \mid \boldsymbol{p}^{(t)}\right] + \operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(2)} \mid \boldsymbol{p}^{(t)}\right]\right)
$$

$$
\operatorname{Var}\left[\boldsymbol{p}_{i}^{(t+1)} \mid \boldsymbol{p}^{(t)}\right] = \operatorname{Var}\left[\boldsymbol{p}_{i}^{(t)} + \frac{1}{K}\left(\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \operatorname{Var}\left[\frac{1}{K}\left(\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \frac{1}{K^{2}} \cdot \operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)} \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \frac{1}{K^{2}} \cdot \left(\operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(1)} \mid \boldsymbol{p}^{(t)}\right] + \operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(2)} \mid \boldsymbol{p}^{(t)}\right]\right)
$$
\n
$$
= \frac{2}{K^{2}} \, \boldsymbol{p}_{i}^{(t)} \left(1 - \boldsymbol{p}_{i}^{(t)}\right)
$$

Compact Genetic Algorithm (cGA) Univariate Marginal Distribution Algorithm (UMDA)

$$
\operatorname{Var}\left[\boldsymbol{p}_{i}^{(t+1)} \mid \boldsymbol{p}^{(t)}\right] = \operatorname{Var}\left[\boldsymbol{p}_{i}^{(t)} + \frac{1}{\kappa}\left(\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \operatorname{Var}\left[\frac{1}{\kappa}\left(\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \frac{1}{\kappa^{2}} \cdot \operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)} \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \frac{1}{\kappa^{2}} \cdot \left(\operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(1)} \mid \boldsymbol{p}^{(t)}\right] + \operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(2)} \mid \boldsymbol{p}^{(t)}\right]\right)
$$
\n
$$
= \frac{2}{\kappa^{2}} \, \boldsymbol{p}_{i}^{(t)} \left(1 - \boldsymbol{p}_{i}^{(t)}\right)
$$

III $\rightarrow p_i$ covers a distance of at most $\frac{1}{4}$ with constant **P** c $\frac{4}{\pi}$ probability within $\Theta(K^2)$ iterations

Compact Genetic Algorithm (cGA) Univariate Marginal Distribution Algorithm (UMDA)

 $\text{Var}\left[\boldsymbol{p}_i^{(t+1)} \mid \boldsymbol{p}^{(t)}\right] = \text{Var}\left[\frac{1}{\mu} \sum_{k \in [\mu]} \widehat{\boldsymbol{x}}_i^{(k)} \mid \boldsymbol{p}^{(t)}\right]$

$$
\operatorname{Var}\left[\boldsymbol{p}_{i}^{(t+1)} \mid \boldsymbol{p}^{(t)}\right] = \operatorname{Var}\left[\boldsymbol{p}_{i}^{(t)} + \frac{1}{K}\left(\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \operatorname{Var}\left[\frac{1}{K}\left(\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \frac{1}{K^{2}} \cdot \operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)} \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \frac{1}{K^{2}} \cdot \left(\operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(1)} \mid \boldsymbol{p}^{(t)}\right] + \operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(2)} \mid \boldsymbol{p}^{(t)}\right]\right)
$$
\n
$$
= \frac{2}{K^{2}} \, \boldsymbol{p}_{i}^{(t)} \left(1 - \boldsymbol{p}_{i}^{(t)}\right)
$$

■ **$$
p_i
$$** covers a distance of at most $\frac{1}{4}$ with constant probability within $\Theta(K^2)$ iterations

Compact Genetic Algorithm (cGA) Univariate Marginal Distribution Algorithm (UMDA)

$$
\operatorname{Var}\left[\boldsymbol{p}_{i}^{(t+1)} \mid \boldsymbol{p}^{(t)}\right] = \operatorname{Var}\left[\boldsymbol{p}_{i}^{(t)} + \frac{1}{K}\left(\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \operatorname{Var}\left[\frac{1}{K}\left(\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \frac{1}{K^{2}} \cdot \operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)} \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \frac{1}{K^{2}} \cdot \left(\operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(1)} \mid \boldsymbol{p}^{(t)}\right] + \operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(2)} \mid \boldsymbol{p}^{(t)}\right]\right)
$$
\n
$$
= \frac{2}{K^{2}} \, \boldsymbol{p}_{i}^{(t)} \left(1 - \boldsymbol{p}_{i}^{(t)}\right)
$$

$$
\operatorname{Var}\left[\boldsymbol{p}_{i}^{(t+1)} \mid \boldsymbol{p}^{(t)}\right] = \operatorname{Var}\left[\frac{1}{\mu} \sum_{k \in [\mu]} \widehat{\boldsymbol{x}}_{i}^{(k)} \mid \boldsymbol{p}^{(t)}\right]
$$

$$
= \frac{1}{\mu^{2}} \operatorname{Var}\left[\sum_{k \in [\mu]} \widehat{\boldsymbol{x}}_{i}^{(k)} \mid \boldsymbol{p}^{(t)}\right]
$$

III $\rightarrow p_i$ covers a distance of at most $\frac{1}{4}$ with constant **P** c $\frac{4}{\pi}$ probability within $\Theta(K^2)$ iterations

Compact Genetic Algorithm (cGA) Univariate Marginal Distribution Algorithm (UMDA)

 $=\frac{1}{\mu^2}Var\left[\sum_{k\in[\mu]}\widehat{x}_i^{(k)}\mid \boldsymbol{p}^{(t)}\right]$

 $=\frac{1}{\mu^2}\sum_{k\in[\mu]}Var\left[\widehat{x}_i^{(k)}\right]p^{(t)}$

 $\text{Var}\left[\boldsymbol{p}_i^{(t+1)} \mid \boldsymbol{p}^{(t)}\right] = \text{Var}\left[\frac{1}{\mu} \sum_{k \in [\mu]} \widehat{\boldsymbol{x}}_i^{(k)} \mid \boldsymbol{p}^{(t)}\right]$

$$
\operatorname{Var}\left[\boldsymbol{p}_{i}^{(t+1)} \mid \boldsymbol{p}^{(t)}\right] = \operatorname{Var}\left[\boldsymbol{p}_{i}^{(t)} + \frac{1}{K}\left(\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \operatorname{Var}\left[\frac{1}{K}\left(\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \frac{1}{K^{2}} \cdot \operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)} \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \frac{1}{K^{2}} \cdot \left(\operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(1)} \mid \boldsymbol{p}^{(t)}\right] + \operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(2)} \mid \boldsymbol{p}^{(t)}\right]\right)
$$
\n
$$
= \frac{2}{K^{2}} \, \boldsymbol{p}_{i}^{(t)} \left(1 - \boldsymbol{p}_{i}^{(t)}\right)
$$

III $\rightarrow p_i$ covers a distance of at most $\frac{1}{4}$ with constant **P** c $\frac{4}{\pi}$ probability within $\Theta(K^2)$ iterations

Compact Genetic Algorithm (cGA) Univariate Marginal Distribution Algorithm (UMDA)

 $=\frac{1}{\mu^2}Var\left[\sum_{k\in[\mu]}\widehat{x}_i^{(k)}\mid \boldsymbol{p}^{(t)}\right]$

 $=\frac{1}{\mu^2}\sum_{k\in[\mu]}Var\left[\widehat{x}_i^{(k)}\right]p^{(t)}$

 $=\frac{1}{\mu} p_i^{(t)} (1-p_i^{(t)})$

 $\text{Var}\left[\boldsymbol{p}_i^{(t+1)} \mid \boldsymbol{p}^{(t)}\right] = \text{Var}\left[\frac{1}{\mu} \sum_{k \in [\mu]} \widehat{\boldsymbol{x}}_i^{(k)} \mid \boldsymbol{p}^{(t)}\right]$

$$
\operatorname{Var}\left[\boldsymbol{p}_{i}^{(t+1)} \mid \boldsymbol{p}^{(t)}\right] = \operatorname{Var}\left[\boldsymbol{p}_{i}^{(t)} + \frac{1}{K}\left(\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \operatorname{Var}\left[\frac{1}{K}\left(\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \frac{1}{K^{2}} \cdot \operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)} \mid \boldsymbol{p}^{(t)}\right]
$$
\n
$$
= \frac{1}{K^{2}} \cdot \left(\operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(1)} \mid \boldsymbol{p}^{(t)}\right] + \operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(2)} \mid \boldsymbol{p}^{(t)}\right]\right)
$$
\n
$$
= \frac{2}{K^{2}} \, \boldsymbol{p}_{i}^{(t)} \left(1 - \boldsymbol{p}_{i}^{(t)}\right)
$$

■ **$$
p_i
$$** covers a distance of at most $\frac{1}{4}$ with constant probability within $\Theta(K^2)$ iterations
Commonly Studied EDAs (variances)

Compact Genetic Algorithm (cGA) Univariate Marginal Distribution Algorithm (UMDA)

$$
\operatorname{Var}\left[\boldsymbol{p}_{i}^{(t+1)} \mid \boldsymbol{p}^{(t)}\right] = \operatorname{Var}\left[\boldsymbol{p}_{i}^{(t)} + \frac{1}{\kappa}\left(\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right] \qquad \operatorname{Var}\left[\boldsymbol{p}_{i}^{(t+1)} \mid \boldsymbol{p}^{(t)}\right] = \operatorname{Var}\left[\frac{1}{\mu}\sum_{k\in[\mu]}\widehat{\boldsymbol{x}}_{i}^{(k)} \mid \boldsymbol{p}^{(t)}\right] \n= \operatorname{Var}\left[\frac{1}{\kappa}\left(\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)}\right) \mid \boldsymbol{p}^{(t)}\right] \qquad \qquad \operatorname{Var}\left[\boldsymbol{p}_{i}^{(t+1)} \mid \boldsymbol{p}^{(t)}\right] = \operatorname{Var}\left[\sum_{k\in[\mu]}\widehat{\boldsymbol{x}}_{i}^{(k)} \mid \boldsymbol{p}^{(t)}\right] \n= \frac{1}{\mu^{2}}\operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(k)} \mid \boldsymbol{p}^{(t)}\right] \qquad \qquad \operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(1)} - \widehat{\boldsymbol{x}}_{i}^{(2)} \mid \boldsymbol{p}^{(t)}\right] \qquad \qquad \operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(2)} \mid \boldsymbol{p}^{(t)}\right] \qquad \qquad \operatorname{Var}\left[\widehat{\boldsymbol{x}}_{i}^{(k)} \mid \boldsymbol{p}^{(t)}\right] \n= \frac{1}{\mu}\operatorname{Pr}\left[\boldsymbol{x}_{i}^{(t)} \mid \boldsymbol{p}^{(t)}\right] \n= \frac{1}{\mu}\operatorname{Pr}\left[\boldsymbol{x}_{i}^{(t)} \mid \boldsymbol{p}^{(t)}\right] \qquad \qquad \operatorname{Var}\left[\boldsymbol{x}_{i}^{(2)} \mid \boldsymbol{p}^{(t)}\right] \qquad \qquad \operatorname{Var}\left[\boldsymbol{x}_{i}^{(k)} \mid \boldsymbol{p}^{(t)}\right] \n= \frac{1}{\mu}\operatorname{Pr}\left[\boldsymbol{x}_{i}
$$

III $\rightarrow p_i$ covers a distance of at most $\frac{1}{4}$ with constant **P** c $\frac{4}{\pi}$ probability within $\Theta(K^2)$ iterations

III $\rightarrow p_i$ covers a distance of at most $\frac{1}{4}$ with constant **P** c $\frac{4}{\pi}$ probability within $\Theta(\mu)$ iterations

» We wish genetic drift to be low for at least $\Theta(T)$ iterations

[Sudholt, Witt'16; Friedrich, Kötzing, K.'16; Doerr, Zheng'20]

- » We wish genetic drift to be low for at least $\Theta(T)$ iterations
- » $\bm p_i$ covers a distance of at most $\frac{1}{4}$ with probability at least $1-\exp\left(-\Theta\left(\frac{1}{\text{Var}\cdot T}\right)\right)$. [Doerr, Zheng'20]

9

[Sudholt, Witt'16; Friedrich, Kötzing, K.'16; Doerr, Zheng'20]

- » We wish genetic drift to be low for at least $\Theta(T)$ iterations
- » $\bm p_i$ covers a distance of at most $\frac{1}{4}$ with probability at least $1-\exp\left(-\Theta\left(\frac{1}{\text{Var}\cdot T}\right)\right)$. [Doerr, Zheng'20]
- **IIII** Choose algorithm parameters such that $Var \in \Theta\left(\frac{1}{T \log n}\right)$ » Guarantee with high probability

[Sudholt, Witt'16; Friedrich, Kötzing, K.'16; Doerr, Zheng'20]

- » We wish genetic drift to be low for at least $\Theta(T)$ iterations
- » $\bm p_i$ covers a distance of at most $\frac{1}{4}$ with probability at least $1-\exp\left(-\Theta\left(\frac{1}{\text{Var}}\right)\right)$ [Doerr, Zheng'20]
- **IIII** Choose algorithm parameters such that $Var \in \Theta\left(\frac{1}{T \log n}\right)$ » Guarantee with high probability
- » Several times derived before, not fully rigorously [Thierens, Goldberg, Pereira'98; Lobo,Goldberg, Pelikan'00; Shapiro'05]

[Sudholt, Witt'16; Friedrich, Kötzing, K.'16; Doerr, Zheng'20]

- » We wish genetic drift to be low for at least $\Theta(T)$ iterations
- » $\bm p_i$ covers a distance of at most $\frac{1}{4}$ with probability at least $1-\exp\left(-\Theta\left(\frac{1}{\text{Var}\cdot T}\right)\right)$. [Doerr, Zheng'20]
- **IIII** Choose algorithm parameters such that $Var \in \Theta\left(\frac{1}{T \log n}\right)$ » Guarantee with high probability
-

» Several times derived before, not fully rigorously [Thierens, Goldberg, Pereira'98; Lobo,Goldberg, Pelikan'00; Shapiro'05]

- **» Smart-restart strategy** for EDAs [Doerr, Zheng'20]
	- Choose some variance and run the EDA for $\Theta\left(\frac{1}{Var}\right)$ iterations

[Sudholt, Witt'16; Friedrich, Kötzing, K.'16; Doerr, Zheng'20]

- » We wish genetic drift to be low for at least $\Theta(T)$ iterations
- » $\bm p_i$ covers a distance of at most $\frac{1}{4}$ with probability at least $1-\exp\left(-\Theta\left(\frac{1}{\text{Var}\cdot T}\right)\right)$. [Doerr, Zheng'20]
- **IIII** Choose algorithm parameters such that $Var \in \Theta\left(\frac{1}{T \log n}\right)$ » Guarantee with high probability
-

» Several times derived before, not fully rigorously [Thierens, Goldberg, Pereira'98; Lobo,Goldberg, Pelikan'00; Shapiro'05]

- **» Smart-restart strategy** for EDAs [Doerr, Zheng'20]
	- Choose some variance and run the EDA for $\Theta\left(\frac{1}{Var}\right)$ iterations
	- If not happy, **halve the variance**, repeat the algorithm

[Sudholt, Witt'16; Friedrich, Kötzing, K.'16; Doerr, Zheng'20]

- » We wish genetic drift to be low for at least $\Theta(T)$ iterations
- » $\bm p_i$ covers a distance of at most $\frac{1}{4}$ with probability at least $1-\exp\left(-\Theta\left(\frac{1}{\text{Var}\cdot T}\right)\right)$. [Doerr, Zheng'20]
- **IIII** Choose algorithm parameters such that $Var \in \Theta\left(\frac{1}{T \log n}\right)$ » Guarantee with high probability
-

» Several times derived before, not fully rigorously [Thierens, Goldberg, Pereira'98; Lobo,Goldberg, Pelikan'00; Shapiro'05]

- **» Smart-restart strategy** for EDAs [Doerr, Zheng'20]
	- Choose some variance and run the EDA for $\Theta\left(\frac{1}{Var}\right)$ iterations
	- If not happy, **halve the variance**, repeat the algorithm
- » The trick carries over to weak preferences of bit values [Doerr, Zheng'20]

$$
x \mapsto \sum_{i \in [n]} x_i = |x|_1 \qquad x \mapsto \max\{i \in [0..n] \mid \forall j \in [i]: x_j = 1\}
$$

$$
x \mapsto \sum_{i \in [n]} x_i = |x|_1 \qquad x \mapsto \max\{i \in [0..n] \mid \forall j \in [i]: x_j = 1\} \qquad x \mapsto \begin{cases} k + |x|_1 & \text{if } |x|_1 \in [n-k] \cup \{n\} \\ n - |x|_1 & \text{else} \end{cases}
$$

$$
x \mapsto \sum_{i \in [n]} x_i = |x|_1 \qquad x \mapsto \max\{i \in [0..n] \mid \forall j \in [i]: x_j = 1\} \qquad x \mapsto \begin{cases} k + |x|_1 & \text{if } |x|_1 \in [n-k] \cup \{n\} \\ n - |x|_1 & \text{else} \end{cases} \qquad x \mapsto \sum_{i \in [n]} 2^{n-i} \cdot x_i
$$

10

Also: (non-exhaustive)

- » Analyses on noise [Friedrich, Kötzing, K., Witt'17; Lehre, Nguyen'19; Lehre, Nguyen'21; Kötzing, Radhakrishnan'22]
- » Analyses on deception [Lehre, Nguyen'19; Doerr, K.'21]
- » New EDAs [Doerr, K.'20; Ajimakin, Devi'23]
- » Multi-valued EDAs [Ben Jedidia, Doerr, K.'24; Adak, Witt'24]

A SERVIE AND A SURVEY SERVIEW And other mild assumptions, such as that K is polynomial

 ∞ $\;\;$ $\textsf{Choose}\; K\in \Omega\big(\sqrt{\mathrm{E}[T]\log n}\,\big) \twoheadrightarrow \;\;$ And other mild assumptions, such as that K is polynomial

III All frequencies are with high probability at least $\frac{1}{4}$ for at least T iterations \rightarrow We determine T later

 ∞ $\;\;$ $\textsf{Choose}\; K\in \Omega\big(\sqrt{\mathrm{E}[T]\log n}\,\big) \twoheadrightarrow \;\;$ And other mild assumptions, such as that K is polynomial

III All frequencies are with high probability at least $\frac{1}{4}$ for at least T iterations \rightarrow We determine T later

» Consider the potential $\varphi^{(t)} \coloneqq \sum_{i \in [n]} \left(1 - \bm{p}_i^{(t)}\right)$, which we aim to **minimize**

$$
\mathbf{\hat{E}}\left[\boldsymbol{\varphi}^{(t)} - \boldsymbol{\varphi}^{(t+1)} | \boldsymbol{p}^{(t)}\right] = \sum_{i \in [n]} \mathrm{E}\left[\boldsymbol{p}_i^{(t+1)} - \boldsymbol{p}_i^{(t)} | \boldsymbol{p}^{(t)}\right]
$$

- ∞ $\;\;$ $\textsf{Choose}\; K\in \Omega\big(\sqrt{\mathrm{E}[T]\log n}\,\big) \twoheadrightarrow \;\;$ And other mild assumptions, such as that K is polynomial
- **III All** frequencies are with high probability at least $\frac{1}{4}$ for at least T iterations \rightarrow We determine T later
- » Consider the potential $\varphi^{(t)} \coloneqq \sum_{i \in [n]} \left(1 \bm{p}_i^{(t)}\right)$, which we aim to **minimize**
- » This potential holds a secret we will uncover soon

$$
\mathbf{\hat{E}}\left[\boldsymbol{\varphi}^{(t)} - \boldsymbol{\varphi}^{(t+1)} | \boldsymbol{p}^{(t)}\right] = \sum_{i \in [n]} \mathrm{E}\left[\boldsymbol{p}_i^{(t+1)} - \boldsymbol{p}_i^{(t)} | \boldsymbol{p}^{(t)}\right]
$$

» We bound $\text{E}\left[\boldsymbol{p}_i^{(t+1)}-\boldsymbol{p}_i^{(t)}\mid \boldsymbol{p}_i^{(t)}\right]$

- » We bound $E\left[\boldsymbol{p}_i^{(t+1)} \boldsymbol{p}_i^{(t)} \mid \boldsymbol{p}_i^{(t)}\right]$
	- \triangleq The bits at position *i* are not always **informative**

» We bound $\mathrm{E}\left[\boldsymbol{p}_i^{(t+1)}-\boldsymbol{p}_i^{(t)}\mid \boldsymbol{p}_i^{(t)}\right]$

- \triangle The bits at position *i* are not always **informative**
- **III** When they are not informative, the expected change is $0 \rightarrow \text{For simplicity, assume}$
	- no bounds

» We bound $\mathrm{E}\left[\boldsymbol{p}_i^{(t+1)}-\boldsymbol{p}_i^{(t)}\mid \boldsymbol{p}_i^{(t)}\right]$

 \cdot The bits at position *i* are not always **informative**

 \blacksquare When they are not informative, the expected change is 0

» **When** are bits informative?

» For simplicity, assume no bounds

» We bound $\mathrm{E}\left[\boldsymbol{p}_i^{(t+1)}-\boldsymbol{p}_i^{(t)}\mid \boldsymbol{p}_i^{(t)}\right]$

 \cdot The bits at position *i* are not always **informative**

 \blacksquare When they are not informative, the expected change is 0

» For simplicity, assume no bounds

» **When** are bits informative?

$$
\dot{\mathbf{x}}^{(1)} \quad 1100 ? 11110
$$
\n
$$
\dot{\mathbf{x}}^{(2)} \quad 0011 ? 00011
$$
\n
$$
\text{Since } \underbrace{\left|\dot{\mathbf{x}}^{(1)}\right|_1 - \left|\dot{\mathbf{x}}^{(2)}\right|_1}_{=:D} \ge 2 \text{, position } i \text{ is not informative}
$$

» We bound $\mathrm{E}\left[\boldsymbol{p}_i^{(t+1)}-\boldsymbol{p}_i^{(t)}\mid \boldsymbol{p}_i^{(t)}\right]$

 \cdot The bits at position *i* are not always **informative**

 \blacksquare When they are not informative, the expected change is 0

» For simplicity, assume no bounds

» **When** are bits informative?

$$
\dot{\mathbf{x}}^{(1)} \quad 1100 ? 11110 \quad \text{and} \quad \text{Since } \underbrace{\left|\dot{\mathbf{x}}^{(1)}\right|_1 - \left|\dot{\mathbf{x}}^{(2)}\right|_1}_{=:D} \ge 2 \text{, position } i \text{ is not informative}
$$

 $\blacksquare \blacktriangleright \mathrm{E}\left[\boldsymbol{p}_i^{(t+1)} - \boldsymbol{p}_i^{(t)} \mid \boldsymbol{p}^{(t)}\right] \geq \frac{2}{K}$ $\frac{1}{K}$ $\boldsymbol{p}_i^{(t)}$ $\left(1-\boldsymbol{p}_i^{(t)}\right) \cdot \Pr\left[D=0 \mid \boldsymbol{p}^{(t)}\right]$ » Ignoring the case $D = 1$ does not change the result asymptotically here

• How to bound $Pr[D = 0 | p^{(t)}]$?

How to bound
$$
Pr[D = 0 | p^{(t)}]
$$
?

• Let
$$
X = \sum_{j \in [n] \setminus \{i\}} x_i^{(1)}
$$
 and $Y = \sum_{j \in [n] \setminus \{i\}} x_i^{(2)}$

How to bound
$$
Pr(D = 0 | p^{(t)}]
$$
?

• Let
$$
X = \sum_{j \in [n] \setminus \{i\}} x_i^{(1)}
$$
 and $Y = \sum_{j \in [n] \setminus \{i\}} x_i^{(2)}$

 \blacksquare X and Y follow independent Poisson-binomial distributions

» **How** to bound $Pr\left[D=0 | p^{(t)}\right]$?

• Let
$$
X = \sum_{j \in [n] \setminus \{i\}} x_i^{(1)}
$$
 and $Y = \sum_{j \in [n] \setminus \{i\}} x_i^{(2)}$

- \blacksquare X and Y follow independent Poisson-binomial distributions
	- » These are concentrated around their expectation within their standard deviation σ

• How to bound $Pr\left[D=0 | p^{(t)}\right]$?

• Let
$$
X = \sum_{j \in [n] \setminus \{i\}} x_i^{(1)}
$$
 and $Y = \sum_{j \in [n] \setminus \{i\}} x_i^{(2)}$

- \blacksquare X and Y follow independent Poisson-binomial distributions
	- » These are concentrated around their expectation within their standard deviation σ

• How to bound $Pr\left[D=0 | p^{(t)}\right]$?

• Let
$$
X = \sum_{j \in [n] \setminus \{i\}} x_i^{(1)}
$$
 and $Y = \sum_{j \in [n] \setminus \{i\}} x_i^{(2)}$

- \blacksquare X and Y follow independent Poisson-binomial distributions
	- » These are concentrated around their expectation within their standard deviation σ

• How to bound $Pr\left[D=0 | p^{(t)}\right]$?

• Let
$$
X = \sum_{j \in [n] \setminus \{i\}} x_i^{(1)}
$$
 and $Y = \sum_{j \in [n] \setminus \{i\}} x_i^{(2)}$

- X and Y follow independent Poisson-binomial distributions
	- » These are concentrated around their expectation within their standard deviation σ

The probability of each outcome in I is very roughly the same, that is, $\frac{1}{11}$ $rac{1}{|I|} \approx \frac{1}{\sigma}$ σ

$$
\text{ Note that } \sigma = \sqrt{\text{Var}\left[X \mid \boldsymbol{p}^{(t)}\right]} =
$$

$$
\sqrt{\Sigma_{j\in[n]\setminus\{i\}}p_j^{(t)}\left(1-p_j^{(t)}\right)}
$$

$$
Pr[D = 0 | p^{(t)}] = Pr[X = Y | p^{(t)}]
$$

$$
\Pr[D = 0 | p^{(t)}] = \Pr[X = Y | p^{(t)}]
$$

$$
= \sum_{j \in [n-1]} \Pr[X = j \land Y = j | p^{(t)}]
$$

$$
\Pr\left[D=0 \mid \boldsymbol{p}^{(t)}\right] = \Pr\left[X=Y \mid \boldsymbol{p}^{(t)}\right]
$$

$$
= \sum_{j\in[n-1]} \Pr\left[X=j \land Y=j \mid \boldsymbol{p}^{(t)}\right]
$$

$$
= \sum_{j\in[n-1]} q_j^2
$$

$$
\Pr[D = 0 | p^{(t)}] = \Pr[X = Y | p^{(t)}]
$$

= $\sum_{j \in [n-1]} \Pr[X = j \land Y = j | p^{(t)}]$
= $\sum_{j \in [n-1]} q_j^2$
 $\ge \sum_{j \in I} q_j^2$
$$
\Pr[D = 0 | p^{(t)}] = \Pr[X = Y | p^{(t)}]
$$

= $\sum_{j \in [n-1]} \Pr[X = j \land Y = j | p^{(t)}]$
= $\sum_{j \in [n-1]} q_j^2$
 $\ge \sum_{j \in I} q_j^2$

$$
\Pr[D = 0 | p^{(t)}] = \Pr[X = Y | p^{(t)}]
$$

= $\sum_{j \in [n-1]} \Pr[X = j \land Y = j | p^{(t)}]$
= $\sum_{j \in [n-1]} q_j^2$
 $\ge \sum_{j \in I} q_j^2$

$$
\Pr\left[D = 0 \mid \boldsymbol{p}^{(t)}\right] = \Pr\left[X = Y \mid \boldsymbol{p}^{(t)}\right] \\
= \sum_{j \in [n-1]} \Pr\left[X = j \land Y = j \mid \boldsymbol{p}^{(t)}\right] \\
= \sum_{j \in [n-1]} q_j^2 \\
\ge \sum_{j \in I} q_j^2 \\
\text{(Jensen)} \\
\ge \frac{\left(\sum_{j \in I} q_j\right)^2}{|I|}
$$

Jensen's inequality:
$$
\frac{\sum_{k \in L} a_k^2}{|L|} \ge \left(\frac{\sum_{k \in L} a_k}{|L|}\right)^2
$$

$$
\implies \sum_{k \in L} a_k^2 \ge \frac{(\sum_{k \in L} a_k)^2}{|L|}
$$

$$
\Pr[D = 0 | p^{(t)}] = \Pr\left[X = Y | p^{(t)}\right]
$$

\n
$$
= \sum_{j \in [n-1]} \Pr\left[X = j \land Y = j | p^{(t)}\right]
$$

\n
$$
= \sum_{j \in [n-1]} q_j^2
$$

\n
$$
\geq \sum_{j \in I} q_j^2
$$

\n(Jensen)
\n
$$
\geq \frac{\left(\sum_{j \in I} q_j\right)^2}{|I|}
$$

\n
$$
\geq \frac{\left(\Pr\left[|X - E[X]| < \sigma + 1 | p^{(t)}\right]\right)^2}{|I|}
$$

$$
\Pr[D = 0 | p^{(t)}] = \Pr[X = Y | p^{(t)}]
$$

\n
$$
= \sum_{j \in [n-1]} \Pr[X = j \land Y = j | p^{(t)}]
$$

\n
$$
= \sum_{j \in [n-1]} q_j^2
$$

\n
$$
\geq \sum_{j \in I} q_j^2
$$

\n(Jensen)
\n
$$
\geq \frac{(\sum_{j \in I} q_j)^2}{|I|}
$$

\n(Chebyshev)
\n
$$
\geq \frac{1}{|I|}
$$

$$
\Pr[D = 0 | p^{(t)}] = \Pr[X = Y | p^{(t)}]
$$

\n
$$
= \sum_{j \in [n-1]} \Pr[X = j \land Y = j | p^{(t)}]
$$

\n
$$
= \sum_{j \in [n-1]} q_j^2
$$

\n
$$
\geq \sum_{j \in I} q_j^2
$$

\n(Jensen)
\n
$$
\geq \frac{(\sum_{j \in I} q_j)^2}{|I|}
$$

\n(Chebyshev)
\n
$$
\geq \frac{1}{|I|}
$$

\n
$$
\approx \frac{1}{\sigma}
$$

$$
\text{ where } \sigma_i = \sqrt{\sum_{j \in [n] \setminus \{i\}} p_j^{(t)} \left(1 - p_j^{(t)}\right)} \text{ and } \sigma = \sqrt{\sum_{i \in [n]} p_i^{(t)} \left(1 - p_i^{(t)}\right)}
$$

$$
\text{ where } \sigma_i = \sqrt{\sum_{j \in [n] \setminus \{i\}} p_j^{(t)} \left(1 - p_j^{(t)}\right)} \text{ and } \sigma = \sqrt{\sum_{i \in [n]} p_i^{(t)} \left(1 - p_i^{(t)}\right)}
$$

$$
\text{ where } \mathrm{E}\left[\boldsymbol{p}_i^{(t+1)} - \boldsymbol{p}_i^{(t)} \mid \boldsymbol{p}^{(t)}\right] \gtrsim \frac{2}{K\sigma_i} \boldsymbol{p}_i^{(t)} \left(1 - \boldsymbol{p}_i^{(t)}\right) \ge \frac{2}{K\sigma} \boldsymbol{p}_i^{(t)} \left(1 - \boldsymbol{p}_i^{(t)}\right)
$$

$$
\text{ where } \sigma_i = \sqrt{\sum_{j \in [n] \setminus \{i\}} p_j^{(t)} \left(1 - p_j^{(t)}\right)} \text{ and } \sigma = \sqrt{\sum_{i \in [n]} p_i^{(t)} \left(1 - p_i^{(t)}\right)}
$$

$$
\text{where } \mathrm{E}\left[\boldsymbol{p}_i^{(t+1)} - \boldsymbol{p}_i^{(t)} \mid \boldsymbol{p}^{(t)}\right] \gtrsim \frac{2}{K\sigma_i} \boldsymbol{p}_i^{(t)} \left(1 - \boldsymbol{p}_i^{(t)}\right) \ge \frac{2}{K\sigma} \boldsymbol{p}_i^{(t)} \left(1 - \boldsymbol{p}_i^{(t)}\right)
$$

$$
\mathbb{I} \longrightarrow \mathbb{E} \big[\varphi^{(t)} - \varphi^{(t+1)} \mid \mathbf{p}^{(t)} \big] = \sum_{i \in [n]} \mathbb{E} \left[\mathbf{p}_i^{(t+1)} - \mathbf{p}_i^{(t)} \mid \mathbf{p}^{(t)} \right]
$$

$$
\text{ where } \sigma_i = \sqrt{\sum_{j \in [n] \setminus \{i\}} p_j^{(t)} \left(1 - p_j^{(t)}\right)} \text{ and } \sigma = \sqrt{\sum_{i \in [n]} p_i^{(t)} \left(1 - p_i^{(t)}\right)}
$$

$$
\text{where } \mathrm{E}\left[\boldsymbol{p}_i^{(t+1)} - \boldsymbol{p}_i^{(t)} \mid \boldsymbol{p}^{(t)}\right] \gtrsim \frac{2}{K\sigma_i} \boldsymbol{p}_i^{(t)} \left(1 - \boldsymbol{p}_i^{(t)}\right) \ge \frac{2}{K\sigma} \boldsymbol{p}_i^{(t)} \left(1 - \boldsymbol{p}_i^{(t)}\right)
$$

$$
\mathbb{E}[\varphi^{(t)} - \varphi^{(t+1)} | \mathbf{p}^{(t)}] = \sum_{i \in [n]} \mathbb{E} \left[\mathbf{p}_i^{(t+1)} - \mathbf{p}_i^{(t)} | \mathbf{p}^{(t)} \right]
$$

$$
\geq \frac{2}{K\sigma} \sum_{i \in [n]} \mathbf{p}_i^{(t)} \left(1 - \mathbf{p}_i^{(t)} \right)
$$

$$
\text{ where } \sigma_i = \sqrt{\sum_{j \in [n] \setminus \{i\}} p_j^{(t)} \left(1 - p_j^{(t)}\right)} \text{ and } \sigma = \sqrt{\sum_{i \in [n]} p_i^{(t)} \left(1 - p_i^{(t)}\right)}
$$

$$
\text{ where } \mathrm{E}\left[\boldsymbol{p}_i^{(t+1)} - \boldsymbol{p}_i^{(t)} \mid \boldsymbol{p}^{(t)}\right] \gtrsim \frac{2}{K\sigma_i} \boldsymbol{p}_i^{(t)} \left(1 - \boldsymbol{p}_i^{(t)}\right) \ge \frac{2}{K\sigma} \boldsymbol{p}_i^{(t)} \left(1 - \boldsymbol{p}_i^{(t)}\right)
$$

$$
\mathbb{E}[\varphi^{(t)} - \varphi^{(t+1)} | \mathbf{p}^{(t)}] = \sum_{i \in [n]} \mathbb{E} \left[\mathbf{p}_i^{(t+1)} - \mathbf{p}_i^{(t)} | \mathbf{p}^{(t)} \right]
$$

$$
\geq \frac{2}{K\sigma} \sum_{i \in [n]} \mathbf{p}_i^{(t)} \left(1 - \mathbf{p}_i^{(t)} \right)
$$

$$
= \frac{2}{K}\sigma
$$

$$
\text{ where } \sigma_i = \sqrt{\sum_{j \in [n] \setminus \{i\}} p_j^{(t)} \left(1 - p_j^{(t)}\right)} \text{ and } \sigma = \sqrt{\sum_{i \in [n]} p_i^{(t)} \left(1 - p_i^{(t)}\right)}
$$

$$
\text{ where } \mathrm{E}\left[\boldsymbol{p}_i^{(t+1)} - \boldsymbol{p}_i^{(t)} \mid \boldsymbol{p}^{(t)}\right] \gtrsim \frac{2}{K\sigma_i} \boldsymbol{p}_i^{(t)} \left(1 - \boldsymbol{p}_i^{(t)}\right) \ge \frac{2}{K\sigma} \boldsymbol{p}_i^{(t)} \left(1 - \boldsymbol{p}_i^{(t)}\right)
$$

$$
\mathbb{E}[\varphi^{(t)} - \varphi^{(t+1)} | \mathbf{p}^{(t)}] = \sum_{i \in [n]} \mathbb{E} \left[p_i^{(t+1)} - p_i^{(t)} | \mathbf{p}^{(t)} \right]
$$

$$
\geq \frac{2}{K\sigma} \sum_{i \in [n]} p_i^{(t)} \left(1 - p_i^{(t)} \right)
$$

$$
= \frac{2}{K}\sigma
$$

» Note that since $p_i^{(t)} \geq \frac{1}{4}$, we have $\sigma^2 = \sum_{i \in [n]} p_i^{(t)} \left(1 - p_i^{(t)}\right) \geq \frac{1}{4} \varphi^{(t)}$

» The secret property of φ ! For one-sided bounded frequencies, sampling variance and distance to the optimal model are roughly the same!

$$
\text{ where } \sigma_i = \sqrt{\sum_{j \in [n] \setminus \{i\}} p_j^{(t)} \left(1 - p_j^{(t)}\right)} \text{ and } \sigma = \sqrt{\sum_{i \in [n]} p_i^{(t)} \left(1 - p_i^{(t)}\right)}
$$

$$
\text{where } \mathrm{E}\left[\boldsymbol{p}_i^{(t+1)} - \boldsymbol{p}_i^{(t)} \mid \boldsymbol{p}^{(t)}\right] \gtrsim \frac{2}{K\sigma_i} \boldsymbol{p}_i^{(t)} \left(1 - \boldsymbol{p}_i^{(t)}\right) \ge \frac{2}{K\sigma} \boldsymbol{p}_i^{(t)} \left(1 - \boldsymbol{p}_i^{(t)}\right)
$$

$$
\mathbb{E}[\varphi^{(t)} - \varphi^{(t+1)} | \mathbf{p}^{(t)}] = \sum_{i \in [n]} \mathbb{E} \left[\mathbf{p}_i^{(t+1)} - \mathbf{p}_i^{(t)} | \mathbf{p}^{(t)} \right]
$$

$$
\geq \frac{2}{K\sigma} \sum_{i \in [n]} \mathbf{p}_i^{(t)} \left(1 - \mathbf{p}_i^{(t)} \right)
$$

$$
= \frac{2}{K}\sigma
$$

» Note that since $p_i^{(t)} \geq \frac{1}{4}$, we have $\sigma^2 = \sum_{i \in [n]} p_i^{(t)} \left(1 - p_i^{(t)}\right) \geq \frac{1}{4} \varphi^{(t)}$

» The secret property of φ ! For one-sided bounded frequencies, sampling variance and distance to the optimal model are roughly the same!

 $\mathbb{E}[\varphi^{(t)} - \varphi^{(t+1)} | \mathbf{p}^{(t)}] \gtrsim \frac{1}{K} \sqrt{\varphi^{(t)}}$

$$
\text{ where } \sigma_i = \sqrt{\sum_{j \in [n] \setminus \{i\}} p_j^{(t)} \left(1 - p_j^{(t)}\right)} \text{ and } \sigma = \sqrt{\sum_{i \in [n]} p_i^{(t)} \left(1 - p_i^{(t)}\right)}
$$

$$
\text{ where } \mathrm{E}\left[\boldsymbol{p}_i^{(t+1)} - \boldsymbol{p}_i^{(t)} \mid \boldsymbol{p}^{(t)}\right] \gtrsim \frac{2}{K\sigma_i} \boldsymbol{p}_i^{(t)} \left(1 - \boldsymbol{p}_i^{(t)}\right) \ge \frac{2}{K\sigma} \boldsymbol{p}_i^{(t)} \left(1 - \boldsymbol{p}_i^{(t)}\right)
$$

$$
\mathbb{E}[\varphi^{(t)} - \varphi^{(t+1)} | \mathbf{p}^{(t)}] = \sum_{i \in [n]} \mathbb{E} \left[\mathbf{p}_i^{(t+1)} - \mathbf{p}_i^{(t)} | \mathbf{p}^{(t)} \right]
$$

$$
\geq \frac{2}{K\sigma} \sum_{i \in [n]} \mathbf{p}_i^{(t)} \left(1 - \mathbf{p}_i^{(t)} \right)
$$

$$
= \frac{2}{K}\sigma
$$

» Note that since $p_i^{(t)} \geq \frac{1}{4}$, we have $\sigma^2 = \sum_{i \in [n]} p_i^{(t)} \left(1 - p_i^{(t)}\right) \geq \frac{1}{4} \varphi^{(t)}$

» The secret property of φ ! For one-sided bounded frequencies, sampling variance and distance to the optimal model are roughly the same!

 $\mathbb{E}[\varphi^{(t)} - \varphi^{(t+1)} | p^{(t)}] \gtrsim \frac{1}{K} \sqrt{\varphi^{(t)}}$ with variable drift \blacksquare

» We have $E[T] \lesssim K\sqrt{n}$ under the assumption $K \in \Omega\left(\sqrt{E[T]\log n}\right)$

- » We have E[T] $\leq K\sqrt{n}$ under the assumption $K ∈ Ω(\sqrt{E[T] \log n})$
	- Solving for K yields $K \in \Omega(\sqrt{n} \log n)$

- » We have $E[T]$ ≲ $K\sqrt{n}$ under the assumption $K ∈ Ω($ $\sqrt{E[T] \log n})$
	- \triangleq Solving for K yields $K \in \Omega(\sqrt{n} \log n)$
- **IIII** The cGA with $K \in \Omega(\sqrt{n} \log n)$ maximizes OneMax in $O(K\sqrt{n})$ iterations in expectation, which is $O(n \log n)$ for minimal K.
- » And other mild assumptions, such as that K is polynomial

- » We have $E[T]$ ≲ $K\sqrt{n}$ under the assumption $K ∈ Ω($ $\sqrt{E[T] \log n})$
	- \triangleq Solving for K yields $K \in \Omega(\sqrt{n} \log n)$
- **IIII** The cGA with $K \in \Omega(\sqrt{n} \log n)$ maximizes OneMax in $O(K\sqrt{n})$ iterations in expectation, which is $O(n \log n)$ for minimal K.
- » And other mild assumptions, such as that K is polynomial

The constraint on K is due to the variance of a single frequency, and the factor \sqrt{n} can be traced back to the sampling variance!

- » We have $E[T] \lesssim K\sqrt{n}$ under the assumption $K \in \Omega\left(\sqrt{E[T]\log n}\right)$
	- \triangleq Solving for K yields $K \in \Omega(\sqrt{n} \log n)$
- **IIII** The cGA with $K \in \Omega(\sqrt{n} \log n)$ maximizes OneMax in $O(K\sqrt{n})$ iterations in expectation, which is $O(n \log n)$ for minimal K.
- » And other mild assumptions, such as that K is polynomial

The constraint on K is due to the variance of a single frequency, and the factor \sqrt{n} can be traced back to the sampling variance!

» Almost matching lower bounds [Droste'06] and **matching lower bounds** [Sudholt, Witt'19] exist

- » We have $E[T]$ ≲ $K\sqrt{n}$ under the assumption $K ∈ Ω($ $\sqrt{E[T] \log n})$
	- \triangleq Solving for K yields $K \in \Omega(\sqrt{n} \log n)$
- **IIII** The cGA with $K \in \Omega(\sqrt{n} \log n)$ maximizes OneMax in $O(K\sqrt{n})$ iterations in expectation, which is $O(n \log n)$ for minimal K.
- » And other mild assumptions, such as that K is polynomial

The constraint on K is due to the variance of a single frequency, and the factor \sqrt{n} can be traced back to the sampling variance!

- » Almost matching lower bounds [Droste'06] and **matching lower bounds** [Sudholt, Witt'19] exist
	- \cdot Sudholt and Witt approximate the potential of the sum of frequencies via a normal distribution

- » We have $E[T] \lesssim K \sqrt{n}$ under the assumption $K \in \Omega\left(\sqrt{E[T] \log n}\right)$
	- \triangleq Solving for K yields $K \in \Omega(\sqrt{n} \log n)$
- **IIII** The cGA with $K \in \Omega(\sqrt{n} \log n)$ maximizes OneMax in $O(K\sqrt{n})$ iterations in expectation, which is $O(n \log n)$ for minimal K.
- » And other mild assumptions, such as that K is polynomial

- The constraint on K is due to the variance of a single frequency, and the factor \sqrt{n} can be traced back to the sampling variance!
- » Almost matching lower bounds [Droste'06] and **matching lower bounds** [Sudholt, Witt'19] exist
	- \cdot Sudholt and Witt approximate the potential of the sum of frequencies via a normal distribution

11.6 » For $K\in \mathrm{O}\left(\frac{\sqrt{n}}{\log(n)\log\log n}\right)$ the run time is in $\Omega\big(K^{1/3}n+n\log n\big)$ [Lengler, Sudholt, Witt'18] » Covers high genetic drift

- The UMDA with $\mu \in \Omega(\sqrt{n} \log n)$ and $\lambda = (1 + \Theta(1))\mu$ optimizes OneMax in $O(\lambda\sqrt{n})$ function evaluations in expectation. This is $O(n \log n)$ for minimal λ . [Witt'18] **1.**
- » **Low** genetic drift.
- » Holds with high probability also without borders.

- The UMDA with $\mu \in \Omega(\sqrt{n} \log n)$ and $\lambda = (1 + \Theta(1))\mu$ optimizes OneMax in $O(\lambda\sqrt{n})$ function evaluations in expectation. This is $O(n\log n)$ for minimal λ . [Witt'18] **1.**
	- 2. The UMDA with $\mu \in \Omega(\log n) \cap O(n^{1-\epsilon})$ and $\lambda = (1 + \Theta(1))\mu$ optimizes OneMax in $O(\lambda n)$ function evaluations in expectation. This is $O(n \log n)$ for minimal λ .
- » **Low** genetic drift.
- » Holds with high probability also without borders.
- » **High** genetic drift.
- » Only holds **with** borders, otherwise infinite even whp.

- The UMDA with $\mu \in \Omega(\sqrt{n} \log n)$ and $\lambda = (1 + \Theta(1))\mu$ optimizes OneMax in $O(\lambda\sqrt{n})$ function evaluations in expectation. This is $O(n\log n)$ for minimal λ . [Witt'18] 1.
	- 2. The UMDA with $\mu \in \Omega(\log n) \cap O(n^{1-\epsilon})$ and $\lambda = (1 + \Theta(1))\mu$ optimizes OneMax in $O(\lambda n)$ function evaluations in expectation. This is $O(n \log n)$ for minimal λ .
- [Lehre, Nguyen'18] The UMDA with $\mu \in \Omega(\log n) \cap O(\sqrt{n})$ and $\lambda = (1 + \Omega(1))\mu$ optimizes OneMax in Comba with $\mu \in \Omega(\log n)$ if $O(\sqrt{n})$ and $\lambda = (1 + \Omega(1))\mu$ optimizes Oriema λ » **High** genetic drift.
in $O(\lambda n)$ function evaluations in expectation. This is $O(n \log n)$ for minimal λ .
- » **Low** genetic drift.
- » Holds with high probability also without borders.
- » **High** genetic drift.
- » Only holds **with** borders, otherwise infinite even whp.
-

- The UMDA with $\mu \in \Omega(\sqrt{n} \log n)$ and $\lambda = (1 + \Theta(1))\mu$ optimizes OneMax in $O(\lambda\sqrt{n})$ function evaluations in expectation. This is $O(n\log n)$ for minimal λ . [Witt'18] 1.
	- 2. The UMDA with $\mu \in \Omega(\log n) \cap O(n^{1-\epsilon})$ and $\lambda = (1 + \Theta(1))\mu$ optimizes OneMax in $O(\lambda n)$ function evaluations in expectation. This is $O(n \log n)$ for minimal λ .
- [Lehre, Nguyen'18] The UMDA with $\mu \in \Omega(\log n) \cap O(\sqrt{n})$ and $\lambda = (1 + \Omega(1))\mu$ optimizes OneMax in Comba with $\mu \in \Omega(\log n)$ if $O(\sqrt{n})$ and $\lambda = (1 + \Omega(1))\mu$ optimizes Oriema λ » **High** genetic drift.
in $O(\lambda n)$ function evaluations in expectation. This is $O(n \log n)$ for minimal λ .
	- » Analysis by Witt very similar to the cGA, but some steps are vastly different
		- ❖ It analogously holds that $\mathbb{E}\left[\bm{p}_i^{(t+1)}-\bm{p}_i^{(t)}\mid \bm{p}^{(t)}\right]\gtrsim \bm{p}_i^{(t)}\left(1-\bm{p}_i^{(t)}\right)$, but for different reasons, involving 1st- and 2nd-class individuals
- » **Low** genetic drift.
- » Holds with high probability also without borders.
- » **High** genetic drift.
- » Only holds **with** borders, otherwise infinite even whp.
-

- The UMDA with $\mu \in \Omega(\sqrt{n} \log n)$ and $\lambda = (1 + \Theta(1))\mu$ optimizes OneMax in $O(\lambda\sqrt{n})$ function evaluations in expectation. This is $O(n \log n)$ for minimal λ . [Witt'18] 1.
	- 2. The UMDA with $\mu \in \Omega(\log n) \cap O(n^{1-\epsilon})$ and $\lambda = (1 + \Theta(1))\mu$ optimizes OneMax in $O(\lambda n)$ function evaluations in expectation. This is $O(n \log n)$ for minimal λ .
- [Lehre, Nguyen'18] The UMDA with $\mu \in \Omega(\log n) \cap O(\sqrt{n})$ and $\lambda = (1 + \Omega(1))\mu$ optimizes OneMax in Comba with $\mu \in \Omega(\log n)$ if $O(\sqrt{n})$ and $\lambda = (1 + \Omega(1))\mu$ optimizes Oriema λ » **High** genetic drift.
in $O(\lambda n)$ function evaluations in expectation. This is $O(n \log n)$ for minimal λ .
	- » Analysis by Witt very similar to the cGA, but some steps are vastly different
		- ❖ It analogously holds that $\mathbb{E}\left[\bm{p}_i^{(t+1)}-\bm{p}_i^{(t)}\mid \bm{p}^{(t)}\right]\gtrsim \bm{p}_i^{(t)}\left(1-\bm{p}_i^{(t)}\right)$, but for different reasons, involving 1st- and 2nd-class individuals
	- » Analysis by Lehre and Nguyen simpler, utilizing a **level-based method**
- **Low** genetic drift.
- » Holds with high probability also without borders.
- » **High** genetic drift.
- » Only holds **with** borders, otherwise infinite even whp.
-

cGA and UMDA on OneMax

cGA and UMDA on OneMax

