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» Due to random fluctuations; 
despite a clear signal

» How fast does 𝒑𝒑𝑖𝑖 cover
distance 𝑑𝑑 ∈ 0,1 ? ➠

drift via
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≈
𝑑𝑑
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[K.’19] [Doerr, Zheng’20]

» This hitting time is
concentrated
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» Population-based incremental learning
» 2-Max-Min ant system with iteration-best update

[Baluja’94]
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All are balanced! (starting with the uniform distribution)
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» Smart-restart strategy for EDAs [Doerr, Zheng’20]

 Choose some variance and run the EDA for Θ 1
Var

 iterations

» Guarantee with high 
probability

 If not happy, halve the variance, repeat the algorithm

» The trick carries over to weak preferences of bit values [Doerr, Zheng’20]
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OneMax LeadingOnes Jump BinVal

cGA

UMDA

[Droste’06; Lengler, Sudholt,
Witt’18; Sudholt, Witt’19]

[Dang, Lehre, Nguyen’18;
Witt’19; K., Witt’20]

[Dang, Lehre, Nguyen’18;
Doerr, K.’21]

[Hasenöhrl, Sutton’18;
Doerr’21; Witt’23]

[Dang, Lehre, Nguyen’18]

[Droste’06; Witt’18]

» Analyses on noise [Friedrich, Kötzing, K., Witt’17; Lehre, Nguyen’19; Lehre, Nguyen’21; Kötzing, Radhakrishnan’22]

» Analyses on deception [Lehre, Nguyen’19; Doerr, K.’21]

» Multi-valued EDAs [Ben Jedidia, Doerr, K.’24; Adak, Witt’24]

Also: (non-exhaustive)

» New EDAs [Doerr, K.’20; Ajimakin, Devi’23]
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» We determine 𝑇𝑇 later

» This potential holds a secret 
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𝑖𝑖

➠ Since �̇�𝒙 1
1 − �̇�𝒙 2

1 ≥ 2, position 𝑖𝑖 is not informative

➠ E 𝒑𝒑𝑖𝑖
𝑡𝑡+1 − 𝒑𝒑𝑖𝑖

𝑡𝑡 | 𝒑𝒑 𝑡𝑡 ≥
2
𝐾𝐾𝒑𝒑𝑖𝑖

𝑡𝑡 1 − 𝒑𝒑𝑖𝑖
𝑡𝑡 ⋅ Pr 𝐷𝐷 = 0 | 𝒑𝒑 𝑡𝑡

=:𝐷𝐷

» Ignoring the case 𝐷𝐷 = 1 does not 
change the result asymptotically here
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» These are concentrated around their expectation within their standard deviation 𝜎𝜎
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» The secret property of 𝜑𝜑!
For one-sided bounded frequencies, sampling 
variance and distance to the optimal model are 
roughly the same!
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» For 𝐾𝐾 ∈ O 𝑛𝑛
log 𝑛𝑛 log log 𝑛𝑛

the run time is in Ω 𝐾𝐾1/3𝑛𝑛 + 𝑛𝑛 log𝑛𝑛 [Lengler, Sudholt, Witt’18] » Covers high genetic drift
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» Analysis by Lehre and Nguyen simpler, utilizing a level-based method
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