Theory of Estimation-of-
Distribution Algorithms

PPSN 2024 Tutorial

@ Estimation-of- os @ Theory
Distribution Algorithms

Estimation-of- eos @ Theory
Distribution Algorithms

» What are they?

Estimation-of- eos @ Theory
Distribution Algorithms

» What are they?

» Focus on the most commonly theoretically
studied ones

Estimation-of- o @ Theory

o o o o (Mathematical rigor)
Distribution Algorithms ethematiane
» What are they?

» Focus on the most commonly theoretically
studied ones

Estimation-of- o @ Theory

o o o o (Mathematical rigor)
Distribution Algorithms pemees
» What are they? » What is studied?

» Focus on the most commonly theoretically
studied ones

Estimation-of- oss € Theory

(Mathematical rigor)

Distribution Algorithms

» What are they? » What is studied?
» Focus on the most commonly theoretically » Selection of important results
studied ones .

% Understand the basic idea

Estimation-of- o Theory

o o o o (Mathematical rigor)
Distribution Algorithms

» What are they? » What is studied?

» Focus on the most commonly theoretically » Selection of important results

studied ones % Understand the basic idea

» Depth over breadth

martin.krejca@polytechnique.edu

Martin S. Krejca -

| martin.krejca@polytechnique.edu

" POLYTECHNIGUE

™, §&IPPARIS

Martin S. Krejca -

DOI: 10.1145/3377929.3389888

GECCOy -

g (more breadth)

Carsten Witt

f:_i martin.krejca@polytechnique.edu

/

X 1806.05392

Martin S. Krejca -

\

DOI: 10.1145/3377929.3389888

(more breadth)

Carsten Witt

Martin S. Krejca -

Carsten Witt

martin.krejca@polytechnique.edu

/

DOI: 10.1145/3377929.3389888

» L

Sunday, Sep. 15 :‘;?ozy* 3t -ﬁ o —"::

9:30-12:30

. T« 5~
~ » - -
» « * - - v " “- - .—“
- - = - g "‘r - L3 -
- - . - PR -~ ™

X 1806.05392

Evolutionary Algorithms

030
QOO0

OO0

Evolutionary Algorithms

Evolutionary Algorithms

Variation

Selection

Evolutionary Algorithms

O%OO QgOO 0O

0030~ 0050 007

OO0 OO0 O

Selection

Estimation-of-Distribution Algorithms

Sampling

e or”
=

So™

W

Probabilistic Models

general

Probabilistic Models

X1 X2 X3 X3 Xg
O 0 0 0 0O
0 O 0 1
0O O 0o 2

- O O

general

Probabilistic Models

X1 X3 X3 Xz Xg
0O 0 0 0 O
O 0 0 0 1
O 0 0 0 2

Hie[#vars] (#Vals(xi)) —1

general

Probabilistic Models

X1 X2 X3 X3 Xg
O 0 0 0 0O
O 0 0 0 1
O 0 0 0 2

Hie[#vars] (#Vals(xi)) —1

general

(&)
@%@

compressed, directed

Probabilistic Models

general

@ X1 X2 Xz X3
o s

0 1
compressed, directed

Mo = O
e N = O

0 2

Hie[#vars] (#Vals(xi)) —1

Probabilistic Models

general

@ X1 X2 Xz X3
@ 0 0 0 0

@ 1 1 0 1
@ @ 2 2 0 2

compressed, directed

Hie[#vars] (#Vals(xi)) —1

z:l'E[#VaFS](#Vals(xi) -1 l_[yEpred(xi) #vals(y)

Probabilistic Models

X1 X2 X3 X3 Xg

0O 0 0 0 O
0O 0 0 0 1
O 0 0 0 2
general
@ X1 X2 X2 X3
@ 0 0 0 0
@ 1 1 0 1
@ @ 2 2 0 2

compressed, directed

Hie[#vars] (#Vals(xi)) —1

Liefsvars) (#vals(x) — 1) [yepreacey #vals(y)

Theory

(xo) (x2) () ()

Theory

f:{0,1}" - R

» Pseudo-Boolean optimization

Theory

f:{0,1}" - R

» Pseudo-Boolean optimization

y /7

< Global optimum often 1™

Theory @ @ @ @

f:{0,1}" > R

» Pseudo-Boolean optimization . H ' D

< Global optimum often 1™

Theory @ @ @ @

f:{0,1}" > R

» Pseudo-Boolean optimization . H ' D

< Global optimum often 1™

» Frequency vector p

Theory @ @ @ @

f:{0,1}* - R

» Pseudo-Boolean optimization . H ' D

< Global optimum often 1™

y /7

» Frequency vector p
» P; ... probability tosamplealati
(green mass)

Theory @ @ @ @

f:{0,1}* - R

» Pseudo-Boolean optimization

y /7

< Global optimum often 1™
» Frequency vector p

» P; ... probability tosamplealati
(green mass)

Theory @ @ @ @

f:{0,1}* - R

» Pseudo-Boolean optimization

y /7

< Global optimum often 1™
» Frequency vector p

» P; ... probability tosamplealati
(green mass)

0 Multi-valued analyses

Theory

AVe 1) R
f

» Pseudo-Boolean optimization

< Global optimum often 1™
» Frequency vector p

» P; ... probability tosamplealati
(green mass)

0 Multi-valued analyses
» DOI: 10.1016/j.tcs.2024.114622

» Runtime Analysis of a Multi-Valued Compact BPSN
Genetic Algorithm on Generalized OneMax 2024

Theory

f:{0,1}* - R

f » Pseudo-Boolean optimization

< Global optimum often 1™

@ » Run time analysis
< Number of evaluations of f until

a global optimum is sampled

» Frequency vector p
» P; ... probability to samplealati
(green mass)

0 Multi-valued analyses
» DOI: 10.1016/j.tcs.2024.114622

» Runtime Analysis of a Multi-Valued Compact
Genetic Algorithm on Generalized OneMax

PPSN
2024

Theory

f

f:{0,1}* - R
» Pseudo-Boolean optimization

< Global optimum often 1™

» Run time analysis
oS

Number of evaluations of f until

a global optimum is sampled

I I I cee i » Favorable albeit not necessary model

» Frequency vector p
» P; ... probability to samplealati
(green mass)

[Ben Jedidia,

0 Multi-valued analyses
-.i_:_ Doerr, K.”24]

» DOI: 10.1016/j.tcs.2024.114622

» Runtime Analysis of a Multi-Valued Compact PPSN
Genetic Algorithm on Generalized OneMax 2024,
[Adak, Witt'24]

Updating a Frequency (commonly)

©

Updating a Frequency (commonly)

o O

v O
m- e

0) y
. |)
i samples {x }jE[A]

Updating a Frequency (commonly)

0 O O

m O -
! OO OO

[samples {x(j) } selected samples {52(") }

JElA] kelu]

(ordered by decreasing fitness)

Updating a Frequency (commonly)

o O O
s O mmp mmp
O - O ~

selected samples {52(") }

gt) samples {x(j) }

(t+1)

JElA] kelu]

(ordered by decreasing fitness)

Updating a Frequency (commonly)

o O O
s O mmp mmp
O - O ~

P; samples {x(j) }

(t+1)

selected samples {ic‘(k) }

JElA] kelu]

(ordered by decreasing fitness)

e [p 0 1)

drift

Updating a Frequency (commonly)

o O O
s O mmp mmp
O - O ~

P; samples {x(j) }

(t+1)

selected samples {52(") }
jela] kelul

(ordered by decreasing fitness)

. (t+1) _ _ (®) (t)] » Estimating the drift, estimates the expected time that
Q p; D; | p the frequency passes a specific value

drift

Updating a Frequency (commonly)

o O O
s O mmp mmp
O - O ~

, (t+1)
i samples {x(]) }jem selected samples {k\(k) }ke[ﬂ] i

(ordered by decreasing fitness)

\5 E (t+1) _ (t) GIE Estimating the drift, estimates the expected time that
: @ Q pi pi | p the frequency passes a specific value

: =

EE

. + Drift analysi . Ehel [Lengler
drift tanalysis X 1712.00964 & [Lenglerg]

o
X 2406.14589 gﬁg [K6tzing'24]

Updating a Frequency (commonly)
© Very tricky!

O S TS
OO OO

selected samples {52(") }

(t+1)

i samples {x(j) }

JElA] kelu]

(ordered by decreasing fitness)

\5 E (t+1) _ (t) GIE Estimating the drift, estimates the expected time that
; @ N pi pi | p the frequency passes a specific value

EE

. + Drift analysi . Ehel [Lengler
drift tanalysis X 1712.00964 & [Lenglerg]

o
X 2406.14589 gﬁg [K6tzing'24]

Updating a Frequency cenetic drify)

» What happens if the samples are not informative?

©

7.2

Updating a Frequency cenetic drify)

» What happens if the samples are not informative?

) and {ng)}

< Each {xl }je[/l]

follows the same distribution
ke[u]

©

» Can happen regularly
during arun

7.2

Updating a Frequency cenetic drify)

» What happens if the samples are not informative?

) and {ng)}

« Each {xl }je[/l]

follows the same distribution
ke[u]

mm> Removes the tricky situation

©

» Can happen regularly
during arun

7.2

Updating a Frequency cenetic drify)

» What happens if the samples are not informative?

) and {ng)}

« Each {xl }je[/l]

follows the same distribution
ke[u]

mm> Removes the tricky situation

E [pgu'l) | p(t)] = pgt) » Typical property of univariate EDAs

(t) balanced

» Can happen regularly
during arun

7.2

Updating a Frequency cenetic drify)

» What happens if the samples are not informative?

) and {ng)}

% Each {xl }je[/l]

follows the same distribution
ke[u]

mm> Removes the tricky situation

E [pgu'l) | p(t)] = pgt) » Typical property of univariate EDAs

(t) balanced

lmp p; is a martingale and approaches the borders quickly

» Can happen regularly
during arun

» Due to random fluctuations;
despite a clear signal

7.2

Updating a Frequency cenetic drify)

» What happens if the samples are not informative?

) and {ng)}

% Each {xl }je[/l]

follows the same distribution
ke[u]

mm> Removes the tricky situation

E [pgu'l) | p(t)] = pgt) » Typical property of univariate EDAs

(t) balanced

lmp p; is a martingale and approaches the borders quickly

/7
0.0

» Can happen regularly
during arun

» Due to random fluctuations;
despite a clear signal

7.2

Updating a Frequency cenetic drify)

» What happens if the samples are not informative?

) and {ng)}

% Each {xl }je[/l]

follows the same distribution
ke[u]

mm> Removes the tricky situation

E [pgu'l) | p(t)] = pgt) » Typical property of univariate EDAs

(t) balanced

lmp p; is a martingale and approaches the borders quickly

/7
0.0

0 » How fast does p; cover
distanced € [0,1]?

» Can happen regularly
during arun

» Due to random fluctuations;
despite a clear signal

7.2

Updating a Frequency cenetic drify)

» What happens if the samples are not informative?

) and {ng)}

% Each {xl }je[/l]

follows the same distribution
ke[u]

mm> Removes the tricky situation

E [pgu'l) | p(t)] = pgt) » Typical property of univariate EDAs

(t) balanced

lmp p; is a martingale and approaches the borders quickly

/7
0.0

0 » How fast does p; cover @V ~ d
distance d € [0,1]? L g Var [pg”l) | p(t)]

variance

» Can happen regularly
during arun

» Due to random fluctuations;
despite a clear signal

7.2

Updating a Frequency cenetic drify)

» What happens if the samples are not informative?
()

(k) » Can happen regularly
i } ~__and {xi }
Jjelal

< Each {x | follows the same distribution during a run

kelu

mm> Removes the tricky situation

E [pgu'l) | p(t)] = pgt) » Typical property of univariate EDAs
(t) balanced
pi . . . » Due to random fluctuations;
lmp p; is a martingale and approaches the borders quickly despite a clear signal ’
drift via d
» H.ow fast does p; sover . ~ o » This hitting time is
distance d € [0,1] e Var [pi | p(t)] concentrated

7.2

Commonly Studied EDAs

Compact Genetic Algorithm (cGa) Univariate Marginal Distribution Algorithm (umpa)

Commonly Studied EDAs

Compact Genetic Algorithm (cGa) Univariate Marginal Distribution Algorithm (umpa)

@)

O » A = 2samples each iteration

Commonly Studied EDAs

Compact Genetic Algorithm (cGa)

@)

O » A = 2samples each iteration

RO Select u = 2 best samples, ranking
¢ O them

Univariate Marginal Distribution Algorithm (umpa)

Commonly Studied EDAs

Compact Genetic Algorithm (cGa)

)

Q> A = 2 samples each iteration

&8 O 5 Select u = 2 best samples, ranking
8

; O them

i i D » Adjust in favor of victor

Univariate Marginal Distribution Algorithm (umpa)

Commonly Studied EDAs

Compact Genetic Algorithm (cGa)

)

Q> A = 2 samples each iteration

&8 O 5 Select u = 2 best samples, ranking
8

; O them

i i D » Adjust in favor of victor

1
(t+1) _ (D ~1))
p; =p;, + e (xi —X;)

/

hypothetical population size

Univariate Marginal Distribution Algorithm (umpa)

Commonly Studied EDAs

Compact Genetic Algorithm (cGa) Univariate Marginal Distribution Algorithm (umpa)
O —_— 2% —_
O » A = 2samples each iteration 0000 » A samples each iteration

8 O » Select u = 2 best samples, ranking
¢ O them

i i D » Adjust in favor of victor

1
(t+1) _ (D ~1))
p; =p;, + e (xi —X;)

/

hypothetical population size

Commonly Studied EDAs

Compact Genetic Algorithm (cGa) Univariate Marginal Distribution Algorithm (umpa)
O i 6% 0 _—
O » A = 2samples each iteration 0000 » A samples each iteration
R0
2 O , select u = 2 best samples, ranking R 8 » Select u < A best samples, ranking
2 O them o them

i i D » Adjust in favor of victor
(t+1)

1
() 1) _ =(2)

/

hypothetical population size

Commonly Studied EDAs

Compact Genetic Algorithm (cGa)

@)

O » A = 2samples each iteration

8 O » Select u = 2 best samples, ranking
¢ O them

i i D » Adjust in favor of victor
(t+1)

1
() 1) _ =(2)

/

hypothetical population size

Univariate Marginal Distribution Algorithm (umpa)

ooo% o
o%oo » A samples each iteration
20
8 8 » Select u < A best samples, ranking
o them

D » Set to the relative number of 1s

Commonly Studied EDAs

Compact Genetic Algorithm (cGa) Univariate Marginal Distribution Algorithm (umpa)
O i 52°0 o _—
O » A = 2samples each iteration 0000 » A samples each iteration
R0
8 O 5 Select i = 2 best samples, ranking R 8 » Select u < A best samples, ranking
2 O them o them
i i D » Adjust in favor of victor D » Set to the relative number of 1s
1 1
plgt+1) _ pgt) N _(ng) _ ngz)) (t+1) _ _z 20
K l l
H e elp]

/

hypothetical population size

Commonly Studied EDAs

Compact Genetic Algorithm (cGa) Univariate Marginal Distribution Algorithm (umpa)
O —_ 200 —_
O » A = 2samples each iteration 000 » A samples each iteration
R0
RO » Select u = 2 best samples, ranking R 8 » Select u < A best samples, ranking
2 O them o them
i g D » Adjust in favor of victor D » Set to the relative number of 1s
pED _ p® 4 l(g@l) 3 ng)) D lz NG
l l l l
/K ‘ HLkel
hypothetical population size 0 » Population-based incremental learning

» 2-Max-Min ant system with iteration-best update

Commonly Studied EDAs

Compact Genetic Algorithm (cGa) Univariate Marginal Distribution Algorithm (umpa)
O —_ 2% _—
O » A = 2samples each iteration 0000 » A samples each iteration
R0
8 O 5 Select i = 2 best samples, ranking R 8 » Select u < A best samples, ranking
2 O them o them
i i D » Adjust in favor of victor D » Set to the relative number of 1s
pED _ p® 4 l(g@l) 3 ng)) D lz NG
l L l l
/K ‘ H kel
hypothetical population size 0 » Population-based incremental learning

» 2-Max-Min ant system with iteration-best update

All are balanced! (starting with the uniform distribution)

Commonly St“diEd EDAs (variances)

Compact Genetic Algorithm (cGa)

Var [pgtH) | p(t)] = Var [pl@ + %(fgl) — f?)) | P(t)]

Univariate Marginal Distribution Algorithm (umpa)

8.2

Commonly St“diEd EDAs (variances)

Compact Genetic Algorithm (cGa)

Var [pgtH) | p(t)] = Var [pl@ + %(f@ — fgz)) | P(t)]

4

= Var [% (k‘gl) - 52%2)) | p(t)]

l

Univariate Marginal Distribution Algorithm (umpa)

8.2

Commonly St“diEd EDAs (variances)

Compact Genetic Algorithm (cGa)

Var [p(t+1)|p(t)] Var[pu) _(Algl)_,?lgz)) |p(t)]
-l 60 =) 1)

- Var [A(l) AEZ) | P(t)]

Univariate Marginal Distribution Algorithm (umpa)

8.2

Commonly St“diEd EDAs (variances)

Compact Genetic Algorithm (cGa)

Var [pl(t+1) | p(f)] Var [p(t) _(Algl) —fl@) |p(t)]
= Var[(A(l) gz)) |P(t)]
- Var [A(l) 7 P(t)]

_ _ (var [#°1p©] + var [p])

Univariate Marginal Distribution Algorithm (umpa)

8.2

Commonly St“diEd EDAs (variances)

Compact Genetic Algorithm (cGa) Univariate Marginal Distribution Algorithm (umpa)

Var [pl(t+1) | p(f)] Var [p(t) _(Algl) —fl@) |p(t)]
= Var[(A(l) gz)) |P(t)]
- Var [A(l) 7 P(t)]
_ _ (var [0 p®] + var [2?] p®])

8.2

Commonly St“diEd EDAs (variances)

Compact Genetic Algorithm (cGa) Univariate Marginal Distribution Algorithm (umpa)

Var [plgm) | p(f)] Var [p(t) _(Algl) —fl@) |p(t)]
= Var[(A(l) §2)) |P(t)]
- Var [A(l) A§2)| P(t)]
- _ (var [#7] p©] + var [£2] p©])

= p; covers a distance of at most % with constant
probability within ©(K ?) iterations

8.2

Commonly St“diEd EDAs (variances)

Compact Genetic Algorithm (cGa) Univariate Marginal Distribution Algorithm (umpa)

Var [p§t+1) | p(t)] Var [p(t) _(Algl) _ yl@)) | p(t)] Var[(t+1) |p(t)] Var[Y eelul 25| p(t)]
= Var[(A(l) §2)) |P(t)]
- Var [A(l) A§2)| P(t)]
= % (Var [?l@l p(t)] + Var [ng)l p(t)])

= p; covers a distance of at most % with constant
probability within ©(K ?) iterations

8.2

Commonly St“diEd EDAs (variances)

Compact Genetic Algorithm (cGa) Univariate Marginal Distribution Algorithm (umpa)
Var [p* 1 pO] = Var [ol0 + 2 (50 =3®) 1p0] Var [p{ 1 pO] = Var [T3 9]
7D _z@ 1 ~k
- Var[(X) |p(t)] =z var [Zkel,uj xg)lp(t)]

- Var [A(l) A§2)| P(t)]
_ _ (var 221 p©)] + var [p])

= p; covers a distance of at most % with constant
probability within ©(K ?) iterations

Commonly St“diEd EDAs (variances)

Compact Genetic Algorithm (cGa) Univariate Marginal Distribution Algorithm (umpa)
Var [p§t+1) |p(t)] Var [p(t) _(Algl) _yl@) |p(t)] Var[(t+1) |p(t)] Var[el A(k)”,(t)]
7D _z@ 1 ~K)
- Var[(X) |p(t)] =z var [Zkel,uj X; |P(t)]
(1) A(Z) @®) 1 P
- Var [i | p] = Ezke[‘u] Var [xfk)| p(t)]

_ _ (var [#°1p©] + var [p])

= p; covers a distance of at most % with constant
probability within ©(K ?) iterations

8.2

Commonly St“diEd EDAs (variances)

Compact Genetic Algorithm (cGa) Univariate Marginal Distribution Algorithm (umpa)
Var [p§t+1) | p(t)] Var [p(t) _(Algl) _ yl@)) | p(t)] Var[(t+1) | p(t)] Var[Y eelul 25| p(t)]
7D _z@ 1 =)
- Var[(X) | p(t)] =z var [Zkel,uj x| P(t)]
A(1) A(z) ®) 1 ~
Var[i | p] = Ezke[‘u] Var [xfk)| p(t)]
_ 1) ~(2)
=z (Var [xl. | p(t)] + Var [xi | p(t)]) = i pi(t) (1 — Pi(t))

= p; covers a distance of at most % with constant
probability within ©(K ?) iterations

8.2

Commonly St“diEd EDAs (variances)

Compact Genetic Algorithm (cGa) Univariate Marginal Distribution Algorithm (umpa)
Var [p§t+1) | p(t)] Var [p(t) _(Algl) _ yl@)) | p(t)] Var[(t+1) | p(t)] Var[Y eelul 25| p(t)]
7D _z@ 1 =)
- Var[(X) | p(t)] =z var [Zkel,uj x| P(t)]
A(1) A(z) ®) 1 ~
Var[i | p] = Ezke[‘u] Var [xfk)| p(t)]
_ 1) ~(2)
=z (Var [xl. | p(t)] + Var [xl. | p(t)]) = i pi(t) (1 — pi(t))

= p; covers a distance of at most % with constant 1 p; covers a distance of at most % with constant
probability within ©(K ?) iterations probability within ©(u) iterations

8.2

Theoretician’s Trick @

» We wish to be low for at least ©(7) iterations

Theoretician’s Trick @

» We wish to be low for at least ©(7) iterations

. 1. s 1
» Pp; covers a distance of at most - with probability at least 1 — exp (—G) (Var.T)>

Theoretician’s Trick @

» We wish to be low for at least ©(7) iterations

_ 1. s 1
» Pp; covers a distance of at most - with probability at least 1 — exp (—G) (Var.T)>

» Guarantee with high

= Choose algorithm parameters such that orobability

Theoretician’s Trick @

» We wish to be low for at least ©(7) iterations

_ 1. s 1
» Pp; covers a distance of at most - with probability at least 1 — exp (—G) (Var.T)>

» Guarantee with high

= Choose algorithm parameters such that orobability

» Several times derived before, not fully rigorously

Theoretician’s Trick @

» We wish to be low for at least ©(7) iterations

_ 1. s 1
» Pp; covers a distance of at most - with probability at least 1 — exp (—G) (Var.T)>

» Guarantee with high

= Choose algorithm parameters such that orobability

» Several times derived before, not fully rigorously

» Smart-restart strategy for EDAs

% Choose some variance and run the EDA for ® (ﬁ) iterations

Theoretician’s Trick @

» We wish to be low for at least ©(7) iterations

_ 1. s 1
» Pp; covers a distance of at most - with probability at least 1 — exp (—G) (Var.T)>

» Guarantee with high

= Choose algorithm parameters such that orobability

» Several times derived before, not fully rigorously

» Smart-restart strategy for EDAs
% Choose some variance and run the EDA for ® (ﬁ) iterations

< If not happy, halve the variance, repeat the algorithm

Theoretician’s Trick @

» We wish to be low for at least ©(7) iterations

_ 1. s 1
» Pp; covers a distance of at most - with probability at least 1 — exp (—G) (Var.T)>

. » ith high
® Choose algorithm parameters such that Guarantee with hig
probability

» Several times derived before, not fully rigorously

» Smart-restart strategy for EDAs
% Choose some variance and run the EDA for ® (ﬁ) iterations

< If not happy, halve the variance, repeat the algorithm

» The trick carries over to weak preferences of bit values

Commonly Studied Benchmarks

OneMax

OneMax(x
A

v

|x]4

X - Z x; =:|x|;
i€[n]

10

Commonly Studied Benchmarks

OneMax LeadingOnes
OneMax(x
4 0000011010
0000100
0 EH

tz x;=t|x|; x~ max{i €[0..n]|Vj € [i]:x; =1}
i€[n]

10

Commonly Studied Benchmarks

OneMax LeadingOnes Jump
OneMax(x Jump(x)
X 0000011010 A //
0000100 k
0 x|, 0 x|

x|_){k+ |x]; if|x]; € [n—k]u{n}

X o x; =:|x x = maxii € [0..n] |Vj€Eli]:x; =1
D= i ef0.n]|vj€lilix =1) el else

10

Commonly Studied Benchmarks

OneMax LeadingOnes
OneMax(x
4 0000011010
0000100
0 EH

tz x;=t|x|; x~ max{i €[0..n]|Vj € [i]:x; =1}
i€[n]

Jump(x)
A

Jump

A

|

»
>

x|y

k+ x|, if|x|, €[n—k]uU{n}
n—|x|; else

BinVal

110000011010
111110000100

X - Z 2nt
i€[n]

10

Commonly Studied Benchmarks

OneMax LeadingOnes Jump BinVal

CGA [Droste’06; Lengler, Sudholt, [Hasendhrl, Sutton’18;
Witt'18; Sudholt, Witt'19] Doerr'21; Witt'23] [Droste’06; Witt'18]
UMDA [Dang, Lehre, Nguyen'18; [Dang, Lehre, Nguyen'18; n
Witt'19; K., Witt'20] Doerr, K.21] [Dang, Lehre, Nguyen'18]

10.2

Commonly Studied Benchmarks

OneMax LeadingOnes Jump BinVal

CGA [Droste’06; Lengler, Sudholt, [Hasendhrl, Sutton’18;
Witt'18; Sudholt, Witt'19] Doerr'21; Witt'23] [Droste’06; Witt'18]
UMDA [Dang, Lehre, Nguyen'18; [Dang, Lehre, Nguyen'18; n
Witt'19; K., Witt'20] Doerr, K.”21] [Dang, Lehre, Nguyen'18]

Also: (non-exhaustive)

» Analyses on nOise [Friedrich, K&tzing, K., Witt'17; Lehre, Nguyen’19; Lehre, Nguyen’21; Kotzing, Radhakrishnan'22]

» Analyses on deception iLehre, Nguyen'19; Doerr, k/21]

M

New EDAS Doerr, k20, Ajimakin, Devi23]

> Multi-valued EDAS zen sedidia, Doerr, k724: Adak, witt24]

>

10.2

cGA on OneMax

Our aim: i g i i 4 i i i i

11

cGA on OneMax

Our aim: i g i i 4 i i i i

@ » Choose » And other mild assumptions, such as that K is polynomial

11

cGA on OneMax

Our aim: i g i i 4 i i i i

@ » Choose » And other mild assumptions, such as that K is polynomial

mmp All frequencies are with high probability at least % for atleast T iterations » We determine T later

11

cGA on OneMax

Our aim: i g i i 4 i i i i

@ » Choose » And other mild assumptions, such as that K is polynomial

mmp All frequencies are with high probability at least % for at least T iterations ~ » We determine T later

» Consider the potential p® := Dieln] (1 - pgt)), which we aim to minimize

& E[(p(t) — D) | p(t)] = Yiep E [pl(Hl) _ pl(t) | p(t)]

11

cGA on OneMax

Our aim: i g i i 4 i i i i

@ » Choose » And other mild assumptions, such as that K is polynomial

mmp All frequencies are with high probability at least % for at least T iterations ~ » We determine T later

(®)

» Consider the potential p® == ¥, 1 (1 - p;), which we aim to minimize ™' Potential holdsasecret

we will uncover soon

& E[(p(t) — D) | p(t)] = Yiep E [pl(Hl) _ pl(t) | p(t)]

11

cGA on OneMax (informative bits)

» We bound E [pgtﬂ) — pgt) | Pl@]

l

cGA on OneMax (informative bits)

» We bound E [pgtﬂ) — pgt) | Pl@]

l

< The bits at position i are not always informative

cGA on OneMax (informative bits)

l

» We bound E [pgtﬂ) — pgt) | pl@]
< The bits at position i are not always informative

mm When they are not informative, the expected change is 0

» For simplicity, assume
no bounds

cGA on OneMax (informative bits)

» We bound E [pgtﬂ) — pgt) | Pl@]

l

< The bits at position i are not always informative

mm When they are not informative, the expected change is 0

» When are bits informative?

i@ 1100711110
+@ 0011200011

l

» For simplicity, assume
no bounds

cGA on OneMax (informative bits)

» We bound E [pgtﬂ) — pgt) | Pl@]

l

< The bits at position i are not always informative

» For simplicity, assume

> When they are not informative, the expected change is 0 no bounds

» When are bits informative?

i@ 1100711110
+@ 0011200011
, - _

L Y

=:D

mm> Since ||5c(1)|1 — |5c(2)|1| > 2, position i is not informative

cGA on OneMax (informative bits)

» We bound E [pgtﬂ) — pgt) | Pl@]

l

< The bits at position i are not always informative

» For simplicity, assume

m= When they are not informative, the expected change is 0 no bounds

» When are bits informative?

i@ 1100711110
+@ 0011200011
, - _

L Y

=:D

mm> Since ||5c(1)|1 — |5c(2)|1| > 2, position i is not informative

» Ignoring the case D = 1 does not

2
(t+1)) | ,.() (t) (t) _ (t)
= E [pi —D; |p] = Epi (1 —D;) - Pr [D =0|p] change the result asymptotically here

cGA on OneMax (e sampling variance)

» How to bound Pr [D =0| p(t)]?

cGA on OneMax (e sampling variance)

» How to bound Pr [D =0| p(t)]?

. _ (D _ (2)
@ LetX = Yiemp X~ andY = Yiempn Xi

cGA on OneMax (e sampling variance)

» How to bound Pr [D =0| p(t)]?

. _ (D _ (2)
@ LetX = Yiemp X~ andY = Yiempn Xi

mm> X and Y follow independent Poisson-binomial distributions

cGA on OneMax (e sampling variance)

» How to bound Pr [D =0| p(t)]?

. _ (D _ (2)
@ LetX = Yiemp X~ andY = Yiempn Xi

mm> X and Y follow independent Poisson-binomial distributions

» These are concentrated around their expectation within their standard deviation o

cGA on OneMax (e sampling variance)

» How to bound Pr [D =0| p(t)]?

. _ (D _ (2)
@ LetX = Yiemp X~ andY = Yiempn Xi

mm> X and Y follow independent Poisson-binomial distributions

» These are concentrated around their expectation within their standard deviation o

E[X] — o E[X] E[X] + 0

EDDD_DDDE

‘%/_/

Constant fraction of the probability mass
ininterval I := [E[X] —0..E[X] + o]

cGA on OneMax (e sampling variance)

» How to bound Pr [D =0| p(t)]?

. _ (D _ (2)
@ LetX = Yiemp X~ andY = Yiempn Xi

mm> X and Y follow independent Poisson-binomial distributions

» These are concentrated around their expectation within their standard deviation o

E[X] — o E[X] E[X] + 0

EDDD_DDDE

‘%/_/

Constant fraction of the probability mass
ininterval I := [E[X] —0..E[X] + o]

The probability of each outcomein I is very
1
11l

I

roughly the same, that is,

cGA on OneMax (e sampling variance)

» How to bound Pr [D =0| p(t)]?

% LetX = Z \{l}x()andY = Z €[n]\{l}x

(2)

mm> X and Y follow independent Poisson-binomial distributions

» These are concentrated around their expectation within their standard deviation o

E[X]—-0o

EDDD

E[X]

E[X]+ o

DDDE

‘%/_/

Constant fraction of the probability mass
ininterval I := [E[X] —0..E[X] + o]

I

The probability of each outcomein I is very

roughly the same, that is,ﬁ ~ =

» Note thato = \/Var [X | p(t)] —

®
\/ Lepno®)” (1-2))

sampling variance

cGA on OneMax (e sampling variance)

Pr[D=01p®] = Pr[x = v | p®]

cGA on OneMax (e sampling variance)

Pr[D=01p®] = Pr[x = v | p®]

=2je[n—1JP1‘[X=J'/\Y=jIp

(t)]

cGA on OneMax (e sampling variance)

Pr[D=01p®] = Pr[x = v | p®]

= Yje-n Pr[X =jAv =j|p®|

=Yjcin-14]

cGA on OneMax (e sampling variance)

Pr[D=01p®] = Pr[x = v | p®]

= Ljen-1) T [X =JjAY =]]| p(”]

=Yjcin-14]

2
2Zjeij

cGA on OneMax (e sampling variance)

Pr[D=01p®] = Pr[x = v | p®]

= Y1) Pr|X =AY =j|p

=Yjcin-14]

2
2Zjeij

(t)]

Jensen’sinequality:

2
YkeL Ak

kel Ak

|L|

X

|L|

>2

cGA on OneMax (e sampling variance)

Pr [D =0]| p(t)] — Pr [X —v| p(t)] Jensen’sinequality: ¥,¢, a2 g <ZREL ak>2

" |L| |L|
= Yje-n Pr[X =jAv =j|p®|

2
=) 2 - 2 > —(ZkEL)
Z]E[Tl—l] q] ZkELak =

|L|
2
= Zjel q;

cGA on OneMax (e sampling variance)

Pr [D =0 | p(t)] = Pr [X =Y| p(t)] Jensen’sinequality: ZkleLLla,% > <Zk|eLL|ak>2
= Yjem-nPr|[x =jny =j1p®|
— 2 (Tker @)’
= Ljein-1]9j - ZkELai = —EILI
= Zje[qu
(Jensen) (Z' 161')2
jer4j

>

|11

CGA on OneMaX (the sampling variance)

Pr [D =0 | p(t)] = Pr [X =Y| p(t)] Jensen’s inequality: ZkleLLla,i S (2k|ELLlak>2
= Sjem-nPr|X =jAY = p"]
- Zje[n—l] q12' L 4 ZkeLalzc = —(Zkelzlak)z
> Yjer 45
(Jensen) N (50 qj)z

|11

(r{ix—ELxli<o+1 | p@])°
|1l

CGA on OneMaX (the sampling variance)

Pr [D =0| p(t)] — Pr [X —v| p(t)] Jensen’sinequality: Y, a2 - (ZREL ak>2
Ll —\ L]
= Yjem-nPr|[x =jny =j1p®|
= . 2 2 (ZkEL ak)z
o1 - Y gx D)
= Zjel q;
(Jensen) (2
Sjer ;)
> 7
- 1]
(Pr[lX—E[X]|<a+1 | p(t)])z
(Chebyshev) I

1

=
1]

CGA on OneMaX (the sampling variance)

Pr [D =0| p(t)] — Pr [X —v| p(t)] Jensen’sinequality: Y, a2 - (ZREL ak>2
Ll —\ L]
= Zjen-g Pr|X =jnY =j|p"]
= . 2 2 (ZkEL ak)z
Zje[n—;] q; L ZkELak 2=
= Zjel q;
(Jensen) (2
Sjer ;)
> 7
- 1]
(Pr[lX—E[X]|<a+1 | p(t)])z
(Chebyshev) I
>1

~

Q
Q |k

cGA on OneMax

. ®) ®) _
> Leto; = \/Zje[n]\{i}pj (1-p])ande = \/Zie[n] P

®

i

(-

(®)

i

)

cGA on OneMax

- © (t)
» Leto, = \/Zje[n]\{i}pj (1 - p] and o= \]Zle (

» Wehave E [pi"™ —p{? | p¥] 2 Zp{” (1-p7) 2

(®)

—b;

= p{"

(1-

)

p

)

cGA on OneMax

- © (t)
» Leto; = \/Zje[n]\{i}pj (1 - p] and o= \/Zle (

» Wehave E [pi"™ —p{? | p¥] 2 Zp{” (1-p7) 2

um E[p® — | pO] = FigpE ol 1 19"

(®)

P

= p{"

(1-

)

p

)

cGA on OneMax

~ ® ¢
» Let o; = \/Zje[n]\{l}p] (1 - p] and o = \/ZLE) (

» We have E [p(tﬂ) © |P(t)] Pft) (1 pz(t))

um E[p® — o | pO] = Sy E ol 19"

= — Dieln]Pft) (pz(t))

(®)

P

= p{"

(1-

)

p

)

cGA on OneMax

~ ® ¢
» Let o; = \/Zje[n]\{l}p] (1 - p] and o = \/ZLE) (

» We have E [p(tﬂ) © |P(t)] Pft) (1 pz(t))

um E[p® — o | pO] = Sy E ol 19"

= — Dieln]Pft) (pz(t))

pl

~p¥

® (1

)

p

)

cGA on OneMax

- © (t)
» Leto; = \/Zje[n]\{i}pj (1 - p] and o= \/Zle (

> We have E [p(t+1) t) | p(t)] pl(t) (1 pl(t)) pft) (1 p!

(t))

um E[p® — | pO] = FigpE ol 1 19"

= EZ eln]Pft) (pl(t))

» Note that since p(t) >1 o we have o2 = Yiel pft) (pft)

-p")

)20

» The secret property of ¢!
For one-sided bounded frequencies, sampling
variance and distance to the optimal model ar
roughly the same!

e

cGA on OneMax

- © (t)
» Leto; = \/Zje[n]\{i}pj (1 - p] and o= \/Zle (

> We have E [p(t+1) t) | p(t)] pl(t) (1 pl(t)) pft) (1 p!

(t))

um E[p® — | pO] = FigpE ol 1 19"

R o L []Pft)(Pft))

» Note that since p(t) >1 o we have o2 = Yiel pft) (pft)

IS E[(p(t) — (p(t+1) |p(t)] > - ,/(p(t)

-p")

)10

» The secret property of ¢!
For one-sided bounded frequencies, sampling
variance and distance to the optimal model ar
roughly the same!

e

cGA on OneMax

- © (t)
» Leto; = \/Zje[n]\{i}pj (1 - p] and o= \/Zle (

» We have E [p(tﬂ) © |P(t)] Pft) (1 pl(t))

um E[p® — | pO] = FigpE ol 1 19"

R o L []Pft)(Pft))

-p")

=p (1-p)

» Note that since p(t) >2 o we have o2 = Yiel pft)(pl(t)) > %(p(t)

variable
I3 E[(p(t) — (P(t+1) | p(t)] > /(p(t) g:z

» The secret property of ¢!
For one-sided bounded frequencies, sampling
variance and distance to the optimal model ar
roughly the same!

e

cGA on OneMax

» We have E[T] < K+/n under the assumption K € Q(E[T] logn)

cGA on OneMax

» We have E[T] < K+/n under the assumption K € Q(E[T] logn)

< Solving for K yields K € Q(y/nlogn)

cGA on OneMax

» We have E[T] < K+/n under the assumption K € Q(E[T] logn)

< Solving for K yields K € Q(y/nlogn)

mm The cGA with K € Q(y/nlogn) maximizes OneMax in O(K+/n) iterations
in expectation, which is for minimal K.

» And other mild assumptions,
such as that K is polynomial

cGA on OneMax

» We have E[T] < K+/n under the assumption K € Q(E[T] logn)

< Solving for K yields K € Q(y/nlogn)

mm The cGA with K € Q(y/nlogn) maximizes OneMax in O(K+/n) iterations » And other mild assumptions,
in expectation, which is for minimal K. such as that K is polynomial

0 The constraint on K is due to the variance of a single frequency, and the factor n
can be traced back to the sampling variance!

cGA on OneMax

» We have E[T] < K+/n under the assumption K € Q(E[T] logn)

< Solving for K yields K € Q(y/nlogn)

mm The cGA with K € Q(y/nlogn) maximizes OneMax in O(K+/n) iterations » And other mild assumptions,
in expectation, which is for minimal K. such as that K is polynomial

The constraint on K is due to the variance of a single frequency, and the factor 'n
0 can be traced back to the sampling variance!

» Almost matching lower bounds and matching lower bounds
exist

cGA on OneMax

» We have E[T] < K+/n under the assumption K € Q(E[T] logn)

< Solving for K yields K € Q(y/nlogn)

mm The cGA with K € Q(y/nlogn) maximizes OneMax in O(K+/n) iterations » And other mild assumptions,

in expectation, which is for minimal K. such as that K is polynomial

The constraint on K is due to the variance of a single frequency, and the factor n
0 can be traced back to the sampling variance!

» Almost matching lower bounds and matching lower bounds
exist

< Sudholt and Witt approximate the potential of the sum of frequencies via a
normal distribution

cGA on OneMax

» We have E[T] < K+/n under the assumption K € Q(E[T] logn)

< Solving for K yields K € Q(y/nlogn)

mm The cGA with K € Q(y/nlogn) maximizes OneMax in O(K+/n) iterations » And other mild assumptions,
in expectation, which is for minimal K. such as that K is polynomial

The constraint on K is due to the variance of a single frequency, and the factor n
0 can be traced back to the sampling variance!

» Almost matching lower bounds and matching lower bounds
exist

< Sudholt and Witt approximate the potential of the sum of frequencies via a
normal distribution

Jn
log(n) loglogn

» ForK €0 () the run time is in Q(K/3n + nlogn) » Covers high genetic drift

UMDA on OneMax (with borders)

[Witt'18]

1.

The UMDA with u € Q(y/nlogn) and 2 = (1 4+ ©(1))u optimizes OneMax in
0(Ay/n) function evaluations in expectation. This is for minimal A.

» Low genetic drift.

» Holds with high probability
also without borders.

12

UMDA on OneMax (with borders)

[Witt'18]

1.

The UMDA with u € Q(y/nlogn) and 2 = (1 4+ ©(1))u optimizes OneMax in

0(Ay/n) function evaluations in expectation. This is

for minimal A.

The UMDA with u € Q(logn) N O(n*~¥) and 1 = (1 + ©(1))u optimizes

OneMax in O(An) function evaluations in expectation. This is
minimal A.

for

»

»

»

Low genetic drift.

Holds with high probability
also without borders.

High genetic drift.

Only holds with borders,
otherwise infinite even whp.

12

UMDA on OneMax (with borders)

witt18] 1. The UMDA with u € Q(y/nlogn) and 1 = (1 4+ ©(1))u optimizes OneMax in > Low genetic drift.
. . . . P . » Holds with high probability
0(Ay/n) function evaluations in expectation. This is for minimal A. 2loo without borders,

2. The UMDA with u € Q(logn) N O(n'~¥) and 1 = (1 + ©(1))u optimizes » High genetic drift.
OneMax in O(An) function evaluations in expectation. This is for » Only holds with borders,
minimal A. otherwise infinite even whp.

[Ibzzr;én,m] The UMDA with i € Q(logn) N 0(y/n) and A = (1 + Q(l)),u optimizes OneMax High genetic drift,
in 0(An) function evaluations in expectation. This is for minimal A.

12

UMDA on OneMax (with borders)

witt18] 1. The UMDA with u € Q(y/nlogn) and 1 = (1 4+ ©(1))u optimizes OneMax in
0(Ay/n) function evaluations in expectation. This is for minimal A.

2. The UMDA with u € Q(logn) N O(n'~¥) and 1 = (1 + ©(1))u optimizes

OneMax in O(An) function evaluations in expectation. This is for
minimal A.
['tlehre, . The UMDA with i € Q(logn) N 0(y/n) and A = (1 + Q(l)),u optimizes OneMax
Javen in 0(An) function evaluations in expectation. This is for minimal A.

» Analysis by Witt very similar to the cGA, but some steps are vastly different

< It analogously holds that E [pg”l) — pgt) | p(t)] = p@ (1 — pl@), but for different

l
reasons, involving 1st- and 2nd-class individuals

»

»

»

Low genetic drift.

Holds with high probability
also without borders.

High genetic drift.

Only holds with borders,
otherwise infinite even whp.

» High genetic drift.

12

UMDA on OneMax (with borders)

witt18] 1. The UMDA with u € Q(y/nlogn) and 1 = (1 4+ ©(1))u optimizes OneMax in
0(Ay/n) function evaluations in expectation. This is for minimal A.

2. The UMDA with u € Q(logn) N O(n'~¥) and 1 = (1 + ©(1))u optimizes

OneMax in O(An) function evaluations in expectation. This is for
minimal A.
['tlehre, . The UMDA with i € Q(logn) N 0(y/n) and A = (1 + Q(l)),u optimizes OneMax
Javen in 0(An) function evaluations in expectation. This is for minimal A.

» Analysis by Witt very similar to the cGA, but some steps are vastly different

< It analogously holds that E [pg”l) — pgt) | p(t)] = p@ (1 — pl@), but for different

l
reasons, involving 1st- and 2nd-class individuals

» Analysis by Lehre and Nguyen simpler, utilizing a level-based method

»

»

»

Low genetic drift.

Holds with high probability
also without borders.

High genetic drift.

Only holds with borders,
otherwise infinite even whp.

» High genetic drift.

12

cGA and UMDA on OneMax

N
o o))
\ﬁgﬂo ®&S

ot

O(nlogn)

v

K,Aas x

high genetic drift low genetic drift

cGA and UMDA on OneMax

O(nlogn)

high genetic drift

low genetic drift

v

K,Aas x

13

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136

