
Theory of Estimation-of-
Distribution Algorithms

PPSN 2024 Tutorial

ve
ct

ee
sy

.c
om



2

TheoryEstimation-of-
Distribution Algorithms

1. 2.(EDAs)



2

TheoryEstimation-of-
Distribution Algorithms

1. 2.(EDAs)

» What are they?



2

TheoryEstimation-of-
Distribution Algorithms

1. 2.(EDAs)

» What are they?

» Focus on the most commonly theoretically 
studied ones



2

TheoryEstimation-of-
Distribution Algorithms

1. 2.(EDAs)

» What are they?

» Focus on the most commonly theoretically 
studied ones

(Mathematical rigor)



2

TheoryEstimation-of-
Distribution Algorithms

1. 2.(EDAs)

» What are they?

» Focus on the most commonly theoretically 
studied ones

» What is studied?

(Mathematical rigor)



2

TheoryEstimation-of-
Distribution Algorithms

1. 2.(EDAs)

» What are they?

» Focus on the most commonly theoretically 
studied ones

» What is studied?

» Selection of  important results

 Understand the basic idea

(Mathematical rigor)



2

TheoryEstimation-of-
Distribution Algorithms

1. 2.(EDAs)

» What are they?

» Focus on the most commonly theoretically 
studied ones

» What is studied?

» Selection of  important results

 Understand the basic idea

» Depth over breadth

(Mathematical rigor)



3

Martin S. Krejca

i
martin.krejca@polytechnique.edu



3

Martin S. Krejca

i

Carsten Witt

martin.krejca@polytechnique.edu

DOI: 10.1145/3377929.3389888

(more breadth)



3

Martin S. Krejca

i

Carsten Witt

martin.krejca@polytechnique.edu

DOI: 10.1145/3377929.3389888

(more breadth)

1806.05392



3

Martin S. Krejca

i

Carsten Witt

martin.krejca@polytechnique.edu

DOI: 10.1145/3377929.3389888

(more breadth)

1806.05392

Sunday, Sep. 15

9:30–12:30



4

Evolutionary Algorithms



4

Variation

Evolutionary Algorithms



4

Variation Selection

𝑓𝑓

Evolutionary Algorithms



4

Variation Selection

𝑓𝑓

Iteration

Evolutionary Algorithms



Estimation-of-Distribution Algorithms

4

𝑓𝑓

Iteration

Sampling Learning



5

Probabilistic Models

general



5

Probabilistic Models

general

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥5
0 0 0 0 0
0 0 0 0 1
0 0 0 0 2…



5

Probabilistic Models

general

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥5
0 0 0 0 0
0 0 0 0 1
0 0 0 0 2…

∏𝑖𝑖∈ #vars #vals 𝑥𝑥𝑖𝑖 − 1 



5

Probabilistic Models

general

𝒙𝒙𝟐𝟐

𝒙𝒙𝟑𝟑

𝒙𝒙𝟒𝟒

𝒙𝒙𝟏𝟏

𝒙𝒙𝟓𝟓

compressed, directed

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥5
0 0 0 0 0
0 0 0 0 1
0 0 0 0 2…

∏𝑖𝑖∈ #vars #vals 𝑥𝑥𝑖𝑖 − 1 



5

Probabilistic Models

general

𝒙𝒙𝟐𝟐

𝒙𝒙𝟑𝟑

𝒙𝒙𝟒𝟒

𝒙𝒙𝟏𝟏

𝒙𝒙𝟓𝟓

compressed, directed

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥5
0 0 0 0 0
0 0 0 0 1
0 0 0 0 2…

∏𝑖𝑖∈ #vars #vals 𝑥𝑥𝑖𝑖 − 1 

𝑥𝑥1
0
1
2…

𝑥𝑥2
0
1
2…

𝑥𝑥2
0
0
0 …

𝑥𝑥3
0
1
2

…



5

Probabilistic Models

general

𝒙𝒙𝟐𝟐

𝒙𝒙𝟑𝟑

𝒙𝒙𝟒𝟒

𝒙𝒙𝟏𝟏

𝒙𝒙𝟓𝟓

compressed, directed

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥5
0 0 0 0 0
0 0 0 0 1
0 0 0 0 2…

∏𝑖𝑖∈ #vars #vals 𝑥𝑥𝑖𝑖 − 1 

𝑥𝑥1
0
1
2…

𝑥𝑥2
0
1
2…

𝑥𝑥2
0
0
0 …

𝑥𝑥3
0
1
2

∑𝑖𝑖∈ #vars #vals 𝑥𝑥𝑖𝑖 − 1 ∏𝑦𝑦∈pred 𝑥𝑥𝑖𝑖 #vals 𝑦𝑦  

…



5

Probabilistic Models

general

𝒙𝒙𝟐𝟐

𝒙𝒙𝟑𝟑

𝒙𝒙𝟒𝟒

𝒙𝒙𝟏𝟏

𝒙𝒙𝟓𝟓

compressed, directed

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥5
0 0 0 0 0
0 0 0 0 1
0 0 0 0 2…

∏𝑖𝑖∈ #vars #vals 𝑥𝑥𝑖𝑖 − 1 

𝑥𝑥1
0
1
2…

𝑥𝑥2
0
1
2…

𝑥𝑥2
0
0
0 …

𝑥𝑥3
0
1
2

∑𝑖𝑖∈ #vars #vals 𝑥𝑥𝑖𝑖 − 1 ∏𝑦𝑦∈pred 𝑥𝑥𝑖𝑖 #vals 𝑦𝑦  

…

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒙𝒙𝒏𝒏…

Theory

univariate



6

Theory

𝑓𝑓
𝑓𝑓: 0,1 𝑛𝑛 → 𝐑𝐑

» Pseudo-Boolean optimization



6

Theory

𝑓𝑓
𝑓𝑓: 0,1 𝑛𝑛 → 𝐑𝐑

» Pseudo-Boolean optimization

 Global optimum often 1𝑛𝑛



6

Theory

𝑓𝑓
𝑓𝑓: 0,1 𝑛𝑛 → 𝐑𝐑

» Pseudo-Boolean optimization

 Global optimum often 1𝑛𝑛

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒙𝒙𝒏𝒏…

…

➠



6

Theory

𝑓𝑓
𝑓𝑓: 0,1 𝑛𝑛 → 𝐑𝐑

» Pseudo-Boolean optimization

 Global optimum often 1𝑛𝑛

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒙𝒙𝒏𝒏…

…

➠
» Frequency vector 𝒑𝒑



6

Theory

𝑓𝑓
𝑓𝑓: 0,1 𝑛𝑛 → 𝐑𝐑

» Pseudo-Boolean optimization

 Global optimum often 1𝑛𝑛

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒙𝒙𝒏𝒏…

…

➠
» Frequency vector 𝒑𝒑
» 𝒑𝒑𝑖𝑖  … probability to sample a 1 at 𝑖𝑖

(green mass)



6

Theory

𝑓𝑓
𝑓𝑓: 0,1 𝑛𝑛 → 𝐑𝐑

» Pseudo-Boolean optimization

 Global optimum often 1𝑛𝑛

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒙𝒙𝒏𝒏…

…

➠
» Frequency vector 𝒑𝒑
» 𝒑𝒑𝑖𝑖  … probability to sample a 1 at 𝑖𝑖

(green mass)

1 − 1
𝑛𝑛

 

1
𝑛𝑛

 



6

Theory

𝑓𝑓
𝑓𝑓: 0,1 𝑛𝑛 → 𝐑𝐑

» Pseudo-Boolean optimization

 Global optimum often 1𝑛𝑛

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒙𝒙𝒏𝒏…

…

➠
» Frequency vector 𝒑𝒑
» 𝒑𝒑𝑖𝑖  … probability to sample a 1 at 𝑖𝑖

(green mass)

Multi-valued analyses

1 − 1
𝑛𝑛

 

1
𝑛𝑛

 



6

Theory

𝑓𝑓
𝑓𝑓: 0,1 𝑛𝑛 → 𝐑𝐑

» Pseudo-Boolean optimization

 Global optimum often 1𝑛𝑛

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒙𝒙𝒏𝒏…

…

➠
» Frequency vector 𝒑𝒑
» 𝒑𝒑𝑖𝑖  … probability to sample a 1 at 𝑖𝑖

(green mass)

Multi-valued analyses
» DOI: 10.1016/j.tcs.2024.114622

» Runtime Analysis of a Multi-Valued Compact 
Genetic Algorithm on Generalized OneMax

1 − 1
𝑛𝑛

 

1
𝑛𝑛

 

[Ben Jedidia,
Doerr, K.’24]

[Adak, Witt’24]



6

Theory

𝑓𝑓
𝑓𝑓: 0,1 𝑛𝑛 → 𝐑𝐑

» Pseudo-Boolean optimization

 Global optimum often 1𝑛𝑛

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒙𝒙𝒏𝒏…

…

➠
» Frequency vector 𝒑𝒑
» 𝒑𝒑𝑖𝑖  … probability to sample a 1 at 𝑖𝑖

(green mass)

Multi-valued analyses
» DOI: 10.1016/j.tcs.2024.114622

» Runtime Analysis of a Multi-Valued Compact 
Genetic Algorithm on Generalized OneMax

» Run time analysis

 Number of evaluations of 𝑓𝑓 until 
a global optimum is sampled

1 − 1
𝑛𝑛

 

1
𝑛𝑛

 

[Ben Jedidia,
Doerr, K.’24]

[Adak, Witt’24]



6

Theory

𝑓𝑓
𝑓𝑓: 0,1 𝑛𝑛 → 𝐑𝐑

» Pseudo-Boolean optimization

 Global optimum often 1𝑛𝑛

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒙𝒙𝒏𝒏…

…

➠
» Frequency vector 𝒑𝒑
» 𝒑𝒑𝑖𝑖  … probability to sample a 1 at 𝑖𝑖

(green mass)

Multi-valued analyses
» DOI: 10.1016/j.tcs.2024.114622

» Runtime Analysis of a Multi-Valued Compact 
Genetic Algorithm on Generalized OneMax

» Run time analysis

 Number of evaluations of 𝑓𝑓 until 
a global optimum is sampled

…➠

1 − 1
𝑛𝑛

 

1
𝑛𝑛

 

» Favorable albeit not necessary model

[Ben Jedidia,
Doerr, K.’24]

[Adak, Witt’24]



7

Updating a Frequency (commonly)

𝒑𝒑𝑖𝑖
𝑡𝑡



7

Updating a Frequency (commonly)

𝒑𝒑𝑖𝑖
𝑡𝑡

samples 𝒙𝒙 𝑗𝑗
𝑗𝑗∈ 𝜆𝜆

➠



7

Updating a Frequency (commonly)

𝒑𝒑𝑖𝑖
𝑡𝑡

samples 𝒙𝒙 𝑗𝑗
𝑗𝑗∈ 𝜆𝜆

➠ ➠

selected samples �𝒙𝒙 𝑘𝑘
𝑘𝑘∈ 𝜇𝜇

(ordered by decreasing fitness)



7

Updating a Frequency (commonly)

𝒑𝒑𝑖𝑖
𝑡𝑡

samples 𝒙𝒙 𝑗𝑗
𝑗𝑗∈ 𝜆𝜆

➠ ➠

selected samples �𝒙𝒙 𝑘𝑘
𝑘𝑘∈ 𝜇𝜇

➠

𝒑𝒑𝑖𝑖
𝑡𝑡+1

(ordered by decreasing fitness)



7

Updating a Frequency (commonly)

𝒑𝒑𝑖𝑖
𝑡𝑡

samples 𝒙𝒙 𝑗𝑗
𝑗𝑗∈ 𝜆𝜆

➠ ➠

selected samples �𝒙𝒙 𝑘𝑘
𝑘𝑘∈ 𝜇𝜇

➠

𝒑𝒑𝑖𝑖
𝑡𝑡+1

E 𝒑𝒑𝑖𝑖
𝑡𝑡+1 − 𝒑𝒑𝑖𝑖

𝑡𝑡 | 𝒑𝒑 𝑡𝑡

drift

(ordered by decreasing fitness)



7

Updating a Frequency (commonly)

𝒑𝒑𝑖𝑖
𝑡𝑡

samples 𝒙𝒙 𝑗𝑗
𝑗𝑗∈ 𝜆𝜆

➠ ➠

selected samples �𝒙𝒙 𝑘𝑘
𝑘𝑘∈ 𝜇𝜇

➠

𝒑𝒑𝑖𝑖
𝑡𝑡+1

E 𝒑𝒑𝑖𝑖
𝑡𝑡+1 − 𝒑𝒑𝑖𝑖

𝑡𝑡 | 𝒑𝒑 𝑡𝑡

drift

» Estimating the drift, estimates the expected time that 
the frequency passes a specific value

(ordered by decreasing fitness)



7

Updating a Frequency (commonly)

𝒑𝒑𝑖𝑖
𝑡𝑡

samples 𝒙𝒙 𝑗𝑗
𝑗𝑗∈ 𝜆𝜆

➠ ➠

selected samples �𝒙𝒙 𝑘𝑘
𝑘𝑘∈ 𝜇𝜇

➠

𝒑𝒑𝑖𝑖
𝑡𝑡+1

E 𝒑𝒑𝑖𝑖
𝑡𝑡+1 − 𝒑𝒑𝑖𝑖

𝑡𝑡 | 𝒑𝒑 𝑡𝑡

drift

» Estimating the drift, estimates the expected time that 
the frequency passes a specific value

Drift analysis 1712.00964 [Lengler’18]

2406.14589 [Kötzing’24]

(ordered by decreasing fitness)



7

Updating a Frequency (commonly)

𝒑𝒑𝑖𝑖
𝑡𝑡

samples 𝒙𝒙 𝑗𝑗
𝑗𝑗∈ 𝜆𝜆

➠ ➠

selected samples �𝒙𝒙 𝑘𝑘
𝑘𝑘∈ 𝜇𝜇

➠

𝒑𝒑𝑖𝑖
𝑡𝑡+1

Very tricky!

E 𝒑𝒑𝑖𝑖
𝑡𝑡+1 − 𝒑𝒑𝑖𝑖

𝑡𝑡 | 𝒑𝒑 𝑡𝑡

drift

» Estimating the drift, estimates the expected time that 
the frequency passes a specific value

Drift analysis 1712.00964 [Lengler’18]

2406.14589 [Kötzing’24]

(ordered by decreasing fitness)



7.2

Updating a Frequency (Genetic drift)

𝒑𝒑𝑖𝑖
𝑡𝑡

» What happens if the samples are not informative?



7.2

Updating a Frequency (Genetic drift)

𝒑𝒑𝑖𝑖
𝑡𝑡

» What happens if the samples are not informative?

 Each 𝒙𝒙𝑖𝑖
𝑗𝑗

𝑗𝑗∈ 𝜆𝜆
 and �𝒙𝒙𝑖𝑖

𝑘𝑘
𝑘𝑘∈ 𝜇𝜇

 follows the same distribution
» Can happen regularly

during a run



7.2

Updating a Frequency (Genetic drift)

𝒑𝒑𝑖𝑖
𝑡𝑡

» What happens if the samples are not informative?

 Each 𝒙𝒙𝑖𝑖
𝑗𝑗

𝑗𝑗∈ 𝜆𝜆
 and �𝒙𝒙𝑖𝑖

𝑘𝑘
𝑘𝑘∈ 𝜇𝜇

 follows the same distribution

➠ Removes the tricky situation

» Can happen regularly
during a run



7.2

Updating a Frequency (Genetic drift)

𝒑𝒑𝑖𝑖
𝑡𝑡

» What happens if the samples are not informative?

 Each 𝒙𝒙𝑖𝑖
𝑗𝑗

𝑗𝑗∈ 𝜆𝜆
 and �𝒙𝒙𝑖𝑖

𝑘𝑘
𝑘𝑘∈ 𝜇𝜇

 follows the same distribution

➠ Removes the tricky situation

E 𝒑𝒑𝑖𝑖
𝑡𝑡+1 | 𝒑𝒑 𝑡𝑡 = 𝒑𝒑𝑖𝑖

𝑡𝑡

balanced

» Typical property of univariate EDAs

» Can happen regularly
during a run



7.2

Updating a Frequency (Genetic drift)

𝒑𝒑𝑖𝑖
𝑡𝑡

» What happens if the samples are not informative?

 Each 𝒙𝒙𝑖𝑖
𝑗𝑗

𝑗𝑗∈ 𝜆𝜆
 and �𝒙𝒙𝑖𝑖

𝑘𝑘
𝑘𝑘∈ 𝜇𝜇

 follows the same distribution

➠ Removes the tricky situation

E 𝒑𝒑𝑖𝑖
𝑡𝑡+1 | 𝒑𝒑 𝑡𝑡 = 𝒑𝒑𝑖𝑖

𝑡𝑡

balanced

» Typical property of univariate EDAs

➠ 𝒑𝒑𝑖𝑖  is a martingale and approaches the borders quickly

» Can happen regularly
during a run

» Due to random fluctuations; 
despite a clear signal



7.2

Updating a Frequency (Genetic drift)

𝒑𝒑𝑖𝑖
𝑡𝑡

» What happens if the samples are not informative?

 Each 𝒙𝒙𝑖𝑖
𝑗𝑗

𝑗𝑗∈ 𝜆𝜆
 and �𝒙𝒙𝑖𝑖

𝑘𝑘
𝑘𝑘∈ 𝜇𝜇

 follows the same distribution

➠ Removes the tricky situation

E 𝒑𝒑𝑖𝑖
𝑡𝑡+1 | 𝒑𝒑 𝑡𝑡 = 𝒑𝒑𝑖𝑖

𝑡𝑡

balanced

» Typical property of univariate EDAs

➠ 𝒑𝒑𝑖𝑖  is a martingale and approaches the borders quickly

 Genetic drift

» Can happen regularly
during a run

» Due to random fluctuations; 
despite a clear signal



7.2

Updating a Frequency (Genetic drift)

𝒑𝒑𝑖𝑖
𝑡𝑡

» What happens if the samples are not informative?

 Each 𝒙𝒙𝑖𝑖
𝑗𝑗

𝑗𝑗∈ 𝜆𝜆
 and �𝒙𝒙𝑖𝑖

𝑘𝑘
𝑘𝑘∈ 𝜇𝜇

 follows the same distribution

➠ Removes the tricky situation

E 𝒑𝒑𝑖𝑖
𝑡𝑡+1 | 𝒑𝒑 𝑡𝑡 = 𝒑𝒑𝑖𝑖

𝑡𝑡

balanced

» Typical property of univariate EDAs

➠ 𝒑𝒑𝑖𝑖  is a martingale and approaches the borders quickly

 Genetic drift

» Can happen regularly
during a run

» Due to random fluctuations; 
despite a clear signal

» How fast does 𝒑𝒑𝑖𝑖 cover
distance 𝑑𝑑 ∈ 0,1 ?



7.2

Updating a Frequency (Genetic drift)

𝒑𝒑𝑖𝑖
𝑡𝑡

» What happens if the samples are not informative?

 Each 𝒙𝒙𝑖𝑖
𝑗𝑗

𝑗𝑗∈ 𝜆𝜆
 and �𝒙𝒙𝑖𝑖

𝑘𝑘
𝑘𝑘∈ 𝜇𝜇

 follows the same distribution

➠ Removes the tricky situation

E 𝒑𝒑𝑖𝑖
𝑡𝑡+1 | 𝒑𝒑 𝑡𝑡 = 𝒑𝒑𝑖𝑖

𝑡𝑡

balanced

» Typical property of univariate EDAs

➠ 𝒑𝒑𝑖𝑖  is a martingale and approaches the borders quickly

 Genetic drift

» Can happen regularly
during a run

» Due to random fluctuations; 
despite a clear signal

» How fast does 𝒑𝒑𝑖𝑖 cover
distance 𝑑𝑑 ∈ 0,1 ? ➠

drift via

variance

≈
𝑑𝑑

Var 𝒑𝒑𝑖𝑖
𝑡𝑡+1 | 𝒑𝒑 𝑡𝑡

[K.’19]



7.2

Updating a Frequency (Genetic drift)

𝒑𝒑𝑖𝑖
𝑡𝑡

» What happens if the samples are not informative?

 Each 𝒙𝒙𝑖𝑖
𝑗𝑗

𝑗𝑗∈ 𝜆𝜆
 and �𝒙𝒙𝑖𝑖

𝑘𝑘
𝑘𝑘∈ 𝜇𝜇

 follows the same distribution

➠ Removes the tricky situation

E 𝒑𝒑𝑖𝑖
𝑡𝑡+1 | 𝒑𝒑 𝑡𝑡 = 𝒑𝒑𝑖𝑖

𝑡𝑡

balanced

» Typical property of univariate EDAs

➠ 𝒑𝒑𝑖𝑖  is a martingale and approaches the borders quickly

 Genetic drift

» Can happen regularly
during a run

» Due to random fluctuations; 
despite a clear signal

» How fast does 𝒑𝒑𝑖𝑖 cover
distance 𝑑𝑑 ∈ 0,1 ? ➠

drift via

variance

≈
𝑑𝑑

Var 𝒑𝒑𝑖𝑖
𝑡𝑡+1 | 𝒑𝒑 𝑡𝑡

[K.’19] [Doerr, Zheng’20]

» This hitting time is
concentrated
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All are balanced! (starting with the uniform distribution)
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 Choose some variance and run the EDA for Θ 1
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» The trick carries over to weak preferences of bit values [Doerr, Zheng’20]
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cGA

UMDA

[Droste’06; Lengler, Sudholt,
Witt’18; Sudholt, Witt’19]

[Dang, Lehre, Nguyen’18;
Witt’19; K., Witt’20]

[Dang, Lehre, Nguyen’18;
Doerr, K.’21]

[Hasenöhrl, Sutton’18;
Doerr’21; Witt’23]

[Dang, Lehre, Nguyen’18]

[Droste’06; Witt’18]

» Analyses on noise [Friedrich, Kötzing, K., Witt’17; Lehre, Nguyen’19; Lehre, Nguyen’21; Kötzing, Radhakrishnan’22]

» Analyses on deception [Lehre, Nguyen’19; Doerr, K.’21]

» Multi-valued EDAs [Ben Jedidia, Doerr, K.’24; Adak, Witt’24]

Also: (non-exhaustive)

» New EDAs [Doerr, K.’20; Ajimakin, Devi’23]
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➠ E 𝒑𝒑𝑖𝑖
𝑡𝑡+1 − 𝒑𝒑𝑖𝑖

𝑡𝑡 | 𝒑𝒑 𝑡𝑡 ≥
2
𝐾𝐾𝒑𝒑𝑖𝑖

𝑡𝑡 1 − 𝒑𝒑𝑖𝑖
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=:𝐷𝐷

» Ignoring the case 𝐷𝐷 = 1 does not 
change the result asymptotically here
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» For 𝐾𝐾 ∈ O 𝑛𝑛
log 𝑛𝑛 log log 𝑛𝑛

the run time is in Ω 𝐾𝐾1/3𝑛𝑛 + 𝑛𝑛 log𝑛𝑛 [Lengler, Sudholt, Witt’18] » Covers high genetic drift
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» Analysis by Lehre and Nguyen simpler, utilizing a level-based method
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