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what is quantum computing?

o quantum computers are not next generation of supercomputers
o we try to re-invent the wheel of computing itself
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what is quantum computing?

o quantum computers are not next generation of supercomputers
o we try to re-invent the wheel of computing itself
o start as small as possible (sic!) to unlock completely new functionalities

ions neutral atoms photons superconducting circuits

useful analogy:
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what is quantum computing?

o quantum computers are not next generation of supercomputers
o we try to re-invent the wheel of computing itself
o start as small as possible (sic!) to unlock completely new functionalities

quest for quantum advantage (raison d'étre for quantum computing)
identify tasks where quantum computers justifiably save a lot of resources:
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quest for quantum advantage (raison d'étre for quantum computing)

o runtime (quantum speedup), e.g. Shor, HHL too demanding near-term
o memory (quantum compression) requires unfavorable compromises
o training data size (quantum-enhanced learning) window of opportunity

\.

identify tasks where quantum computers justifiably save a lot of resources:
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the quantum circuit model

produces a distribution over all 27 bit strings; result often encoded in statistical correlations
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quantum readout problem

quantum device

n 2 100 qubits,
short runtime,
noisy

classical CPU

big & fast,
but not limitless

==

readout
problem
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quantum device

n 2 100 qubits,
short runtime,
noisy

=

classical CPU

big & fast,
but not limitless

i

readout
problem

fundamental challenge

(often) exponential in qubit number
100 qubits = 2190 ~ 1030
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quantum readout problem

tassical CPU g-shadows:
classiea bridge between realms
It & i, (universal, parallel, scalable)

but not limitless /-\ /—\
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classical shadows: high-level overview

state of the art

quantum >

device

UoIRJOI

special purpose, sequential
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classical shadows: high-level overview

classical shadows

N N [

quantum
device
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classical shadows: high-level overview

classical shadows

quantum

device

UOT3RI0I
wopued

o classical shadows are new, universal & parallelizable (Huang, Kueng, Preskill, Nature Physics 2020)
o 2024 Bell prize for John Preskill
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4 qubit case study: extracting properties directly
state preparation: two Bell states } (/00) +[11)) ® (|00) +[11))
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4 qubit case study: extracting properties directly

state preparation: two Bell states } (/00) +[11)) ® (|00) +[11))
(T2a) ZZ correlations for qubits (0,2)
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4 qubit case study: extracting properties directly

state preparation: two Bell states } (/00) +[11)) ® (|00) +[11))
(T3a) ZZ correlations for qubits (0,3)

strategies to determine
o global fidelity

o two-bit correlations (2)
o two-bit correlations (X)

J ! U JOHANNES KEPLER
UNIVERSITY LINZ 09/17/2024 classical shadows: new quantum-classical interfaces 9/21



4 qubit case study: extracting properties directly

state preparation: two Bell states } (/00) +[11)) ® (|00) +[11))
(T3b) XX correlations for qubits (0,3)

strategies to determine
o global fidelity

o two-bit correlations (2)
o two-bit correlations (X)

J ! U JOHANNES KEPLER
UNIVERSITY LINZ 09/17/2024 classical shadows: new quantum-classical interfaces 9/21



4 qubit case study: extracting properties directly

state preparation: two Bell states } (/00) +[11)) ® (|00) +[11))
(T4a) ZZ correlations for qubits (1,2)

strategies to determine
o global fidelity

o two-bit correlations (2)
o two-bit correlations (X)

J ! U JOHANNES KEPLER
UNIVERSITY LINZ 09/17/2024 classical shadows: new quantum-classical interfaces 9/21



4 qubit case study: extracting properties directly

state preparation: two Bell states } (/00) +[11)) ® (|00) +[11))
(T4b) XX correlations for qubits (1,2)

strategies to determine
o global fidelity

o two-bit correlations (2)
o two-bit correlations (X)

J ! U JOHANNES KEPLER
UNIVERSITY LINZ 09/17/2024 classical shadows: new quantum-classical interfaces 9/21



4 qubit case study: extracting properties directly

state preparation: two Bell states } (/00) +[11)) ® (|00) +[11))
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4 qubit case study: extracting properties directly

state preparation: two Bell states } (/00) +[11)) ® (|00) +[11))
(T6a) ZZ correlations for qubits (2,3)

strategies to determine
o global fidelity

o two-bit correlations (2)
o two-bit correlations (X)

J ! U JOHANNES KEPLER
UNIVERSITY LINZ 09/17/2024 classical shadows: new quantum-classical interfaces 9/21



4 qubit case study: extracting properties directly

state preparation: two Bell states } (/00) +[11)) ® (|00) +[11))
(T6b) XX correlations for qubits (2,3)

183=1+2x6
strategies to determine
o global fidelity

o two-bit correlations (2)
o two-bit correlations (X)
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4 qubit case study: classical shadows
state preparation: two Bell states } (|00) + |11)) ® (|00) + [11))
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4 qubit case study: classical shadows

state preparation: two Bell states } (|00) + |11)) ® (|00) + [11))
step 1: randomized readout (single-shot)
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4 qubit case study: classical shadows

state preparation: two Bell states } (|00) + |11)) ® (|00) + [11))
step 2: repeat T times with different random rotations
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4 qubit case study: classical shadows

state preparation: two Bell states } (|00) + |11)) ® (|00) + [11))
step 3: use classical data analysis to predict whatever you want in parallel
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high-level vision

gE | KN A
> 5 2 ) >

o — — —

=8 | N K

full quantum-classical learning pipeline:

o a quantum architecture prepares interesting quantum states

o convert them into a classical shadow (new classical data format)

o use these classical shadows as training data for a classical ML model
= classical machine learning with quantum data
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vignette application: many-body ground state properties

(@) 2o anti-ferromagnetic (b) Exact values from DMRG ML predictions o
random Heisenberg model : ! )
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vignette application:

Htot = Zj H

=

}‘{ Parameters describing
a physical Hamiltonian

many-body ground state properties

direct computation =
P(X) = Vimin(X) Vimin(X) 1
(expensive: D = 2")
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application: learning with quantum data

tr (Op(x))
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Classical representation
of the ground state
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vignette application

x e[-1,1]"
H(X) = 3; H(X)

: many-body ground state properties

=

}‘{ Parameters describing
a physical Hamiltonian
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application: learning with quantum data

tr (Optrain(x))

1010011000111
1000101000011
1110011010100
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Classical representation
of the ground state
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vignette application: many-body ground state properties

A

el (5 000 e 1,17 (O
Hioe(x) = 3 H(X) e || xe = -1,1] (OPyain(X))
1010011000111
1000101000011
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k : neural tangent kernel 1110001001000

}‘{ Parameters describing . .
- I Classical representation
a physical Hamiltonian
of the ground state
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vignette application: many-body ground state properties

A

xe[-1,1" s o) (| . 94 <
Hiot(X) = 3, H(x) e || xe = -1,1] tr (Opyain(X))
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1000101000011
N 1110011010100
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of the ground state
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vignette application: many-body ground state properties

Theorem: assumptions on H(x), O ensure

E 10 11(0Pan() ~tr(0p()* < ¢

(MSE < €) with poly(m) = poly(n) scaling in
o training data size o runtime + memory

A

x € [-1,1]" e, o) ([ 2. 1o 11
Hiot(X) = 3, H(x) (Xt p(xe)) || x ' [-1,1] tr (Opyain(X))
“ ! 1010011000111
1000101000011
N 1110011010100
= Prrain(X) = 2_p_q K (X, X¢) p(Xe) = 0101001001101
: 1110001001000
}{ :::;?:;ﬁ:ﬁﬁizg 35 T B T Classical representation

of the ground state
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main result

O H.Y. Huang, R. Kueng, G. Torlai, V.A. Albert, J. Preskill. Provably efficient ML for many-body problems.
Science 377, eabk3333 (2022)

O L. Lewis, H.Y, Huang, V.T. Tran, S. Lehner, R. Kueng, J. Preskill. Improved machine learning algorithm for
predicting ground state properties. Nature Communications 15, 895 (2024)
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numerics: 2D Heisenberg model with n = 25 spins
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numerics: 2D Heisenberg model with different ML models

comparison between

o NKT (green,red)

o MLP (purple)

o GNN (blue, orange)
collaboration with Caltech
and Hochreiter group (JKU)
[Tran et al, NeurlPS workshop 22]
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numerics: 1D chain of n = 51 Rydberg atoms
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synopsis
quantum device classical CPU
big & fast,

but not limitless

n 2 100 qubits,
short runtime,
noisy

readout
problem

fundamental challenge
(often) exponential in qubit number
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synhopsis

quantum device

n 2 100 qubits,
short runtime,
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synopsis

classical CPU
big & fast,

quantum device

n 2 100 qubits,
short runtime,
noisy

but not limitless

=™

g-shadows

quantum

device
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classical shadows (quantum-classical interfaces)

rigorous+efficient synergies with ML
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QUICK department at Johannes Kepler University Linz

Quantum Information & Computation at Kepler

Johannes Kofler pennylane.ai
- quantum information
- quantum foundations

Richard Kueng (chair)
-> quantum computing
- (convex) optimization
- math of data science

Classical shadow formalism Hybrid quantum-classical algorithms

Join our team: BruQner
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Team
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Brand!| Eder-Jahn Egginger Kirova Peheim Ploier Tran Wilkens "
art & science + outreach
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