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indicators, archiving. 
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Multi-objective Optimization
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Multi-objective Optimization Problem

Definition: xQ is Pareto optimal :

there exists no point yQ\{x} s.t. 

F(y)≤F(x) and F(y)≠F(x).

PQ = set of optimal solutions (Pareto set)

F(PQ) = image of PQ (Pareto front)

Pareto set

f2

f1

Pareto front

f1,f2

x

PQ and F(PQ) typically form

sets of dimension (k-1)
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Pareto Front Shapes

k=2

k=3

k=3

k=4
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Motivation I: Behavior of NSGA-II
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Motivation I: Behavior of NSGA-II
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Motivation I: Behavior of NSGA-II

Desired:

• Impact on performance

• Monotonic behavior

(longer runs

→ better approximations)

• Convergence

(limit behavior,

approximation qualities)
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Motivation II: SMS-EMOA

[Hernández, Sch., 2022]

SMS-EMOA

(final population)

SMS-EMOA-A

(final external archive using 

ArchiveUpdate-HD) 

Results on MaF2
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Archiving/Selection in EMO

1.) Unbounded archivers: store all promising solutions 

mostly PF, but e.g. also entire PS, all local solutions, all nearly optimal solutions    

Theoretical aspects: Schütze et al. 

Practical aspects: Ishibuchi et al.

2.) Implicitly bounded archivers: archive size depends on problem and design 

parameters (e.g., based on 휀-dominance) 

First considerations: Laummans et al. 

Further considerations: Schütze et al.

3.) A priori bounded archivers:  𝐴 = 𝜇
First theoretical investigations: Rudolph, Hanne (convergence of population toward PS) 

Grid selections: Corne and Knowles, Laumanns 

Minimal eps-approximations: Zenklusen and Laumanns
Selection within each MOEA: 

dominance based: nondominating sorting and niching (Goldberg) 

decomposition based: SOP (total order) 

indicator based: indicator value/contribution (SOP)
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Generic Stochastic Search Algorithm

[Laumanns et al., 2002]
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Assumption on Generator

Assumption (A1): Each neighborhood of each point x in the

domain Q will be visited after finitely many steps

∀𝑥 ∈ 𝑄, ∀𝛿 > 0 ∶ 𝑃 ∃𝑙 ∈ ℕ ∶ 𝑃𝑙 ∩ 𝐵𝛿 𝑥 ∩ 𝑄 = 1

E.g., given for Polynomial Mutation: support of probability density

function is identical to Q (at least for box-constrained problems) Q

x

𝐵𝛿(𝑥)

Discrete Problems:

(A1): Generate() is a homogeneous finite Markov Chain

with irreducible transition matrix
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Semi-distance dist

Let 𝑎, 𝑏 ∈ 𝑅𝑛 and 𝐴, 𝐵 ⊂ 𝑅𝑛 be compact

1.) Distance between two points

𝑑 𝑎, 𝑏 = 𝑎 − 𝑏 2

a

b

2.) Distance between point and set

𝑑𝑖𝑠𝑡 𝑎, 𝐵 = 𝑚𝑖𝑛𝑏∈𝐵 𝑎 − 𝑏 2

a

B

3.) Distance ‘dist’ between two sets

𝑑𝑖𝑠𝑡 𝐴, 𝐵 = 𝑚𝑎𝑥𝑎∈𝐴𝑑𝑖𝑠𝑡(𝑎, 𝐵)

B

A

dist (A,B)

dist (B,A)

B

A
𝐴 ⊂ 𝐵, 𝐴 ≠ 𝐵
𝑑𝑖𝑠𝑡 𝐴, 𝐵 = 0
𝑑𝑖𝑠𝑡 𝐵, 𝐴 > 0
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Hausdorff Distance dH

4.) dH: ‘symmetrize’ dist

𝑑𝐻 𝐴, 𝐵 = max(𝑑𝑖𝑠𝑡 𝐴, 𝐵 , 𝑑𝑖𝑠𝑡 𝐵, 𝐴 )

= max(𝑚𝑎𝑥𝑎∈𝐴𝑚𝑖𝑛𝑏∈𝐵 𝑎 − 𝑏 2, 𝑚𝑎𝑥𝑏∈𝐵𝑚𝑖𝑛𝑎∈𝐴 𝑏 − 𝑎 2)

Properties

P1) dH ℚ,ℝ = 0
ℚ ≠ ℝ, but ℚ ‘perfect approximation’ of ℛ (𝑐𝑙𝑜𝑠 ℚ = ℝ)

Felix Hausdorff, 1868-1942

P2) dH punishes (single) outliers

Use averaged Hausdorff distance

Δ𝑝 𝐴, 𝐵 = max(𝐺𝐷𝑝(𝐴, 𝐵), 𝐼𝐺𝐷𝑝(𝐴, 𝐵))
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Task 1: Store all Nondominated Solutions

ArchiveUpdate𝑃𝑄:maintain all non-dominated candidate solutions 

found during the run of the algorithm

→ Use concept of dominance

Let 𝑥, 𝑦 ∈ 𝑄. 𝑥 is said to dominate 𝑦 (𝑥 ≺ 𝑦) iff

• 𝑓𝑖 𝑥 ≤ 𝑓𝑖 𝑦 ∀ 𝑖 = 1,… , 𝑘

• 𝑓𝑗 𝑥 < 𝑓𝑗 𝑦 𝑓𝑜𝑟 𝑎 𝑗 ∈ 1, . . , 𝑘
F(x)

F(y)
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ArchiveUpdate𝑷𝑸

Acceptance strategy

Cleaning strategy

Input:

current archive A0, candidate set P, 

(design parameters)

Input:

updated archive A
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Numerical Results
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Archiver is fed with candidate solutions that are uniformly chosen at random

from the domain. 
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Issues when Using Dominance

2.) Dominance is defined in objective space

Expect: two sub-sequences leading to x1 and x2 

(oscillation), but no convergence toward {x1,x2}

[Ishibuchi et al, 2020]: use auxiliary objectives

෩𝑓𝑖 x = 1 − α 𝑓𝑖 𝑥 +
𝛼

𝑘


𝑖=1

𝑘

𝑓𝑖 (𝑥)

1.) In the presence of weakly optimal solutions

hardly 

dominated 

boundary
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B

A

Theoretical Results

‘Thm 1’ (Monotonicity) Let 𝑃0, … , 𝑃𝑙 ⊂ ℝ𝑛 be finite, and 𝐴𝑖, be the 

archives obtained by ArchiveUpdatePQ, and 𝐶𝑙 = 𝑃0 ∪⋯ ∪𝑃𝑙. Then

𝐴𝑙 = 𝑥 ∈ 𝐶𝑙 ∶ ∄𝑦 ∈ 𝐶𝑙 ∶ 𝑦 ≺ 𝑥

Thm 3 (Convergence II) As in Thm 2, and let there be no weak

Pareto points in 𝑄 ∖ 𝑃𝑄, then

lim
𝑖→∞

𝑑𝐻 𝐹 𝑃𝑄 , 𝐹(𝐴𝑖) = 0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑛𝑒.

Thm 2 (Convergence I) Under the above assumptions, an application 

of ArchiveUpdatePQ leads to a sequence of archives Ai with

lim
𝑖→∞

𝑑𝑖𝑠𝑡 𝐹 𝑃𝑄 , 𝐹(𝐴𝑖) = 0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑛𝑒.

Fig. below: application of  ∆𝑝–Newton method on result above  

[Wang et al., 2024]
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Numerical Results
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Task 2: Obtain Finite Size PF Approximation

휀 −dominance
Let 𝑥, 𝑦 ∈ 𝑄 𝑎𝑛𝑑 휀𝜖𝑅+

𝑘 . 𝑥 is said to 휀 − dominate 𝑦 (𝑥 ≺ 𝑦) iff

• 𝑓𝑖 𝑥 − 휀𝑖 ≤ 𝑓𝑖 𝑦 ∀ 𝑖 = 1, … , 𝑘

• 𝑓𝑗 𝑥 − 휀𝑗 < 𝑓𝑗 𝑦 𝑓𝑜𝑟 𝑎 𝑗 ∈ 1, . . , 𝑘



22

O. Schütze

휀-approximations of the PF
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휀-approximations of the PF
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휀-approximations of the PF
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휀-approximations of the PF
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Archivers for 휀-approximations of the PF

ArchiveUpdateEps1 obtain 휀–approx PS

‘cover’ the entire PF via 휀–dominance

ArchiveUpdateEps2 obtain 휀 − PS
as AU-Eps1, but aim for Pareto optimal archive 
elements

ArchiveUpdateTight1 obtain τ, 휀 −tight 휀–approx PS
as AU-Eps1, but target for a gap-free approximation 
(wrt a given value 𝜏)

ArchiveUpdateTight2 obtain ε −tight 휀–PS
as AU-Tight1, but aim for Pareto optimal archive 
elements
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ArchiveUpdateTight2

Theoretical results for ArchiveUpdateTight2:

• Monotonic behavior (in the sense of 휀 − dominance)

• Yields 휀-approximations of the Pareto front that are gap free (wrt 𝜏) 

after finitely many steps with probabilty one , i.e.,

𝑑𝐻 𝐹 𝑃𝑄 , 𝐹(𝐴𝑖) ≤ τ, ∀𝑖 ≥ 𝑖0

• Archive elements converge toward Pareto set, i.e., 

lim
𝑖→∞

dist 𝐴𝑖 , 𝑃𝑄 = 0
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Comparison

AU-PQ

𝐴 = 2353
𝑇 = 39.1 𝑠

AU-Eps1

𝐴 = 14
𝑇 = 1.4 𝑠

AU-Tight2

𝐴 = 24
𝑇 = 3.5 𝑠

N = 100,000

static (𝑖 ≥ 𝑖0) quasi-static
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Task 3: A Priori Bounded Archiver 

Task: A priori bounded archiver that aims for Hausdorff 

approximations of the Pareto front

• Use ArchiveUpdateTight archivers as basis

• Main question: how to adaptively choose 

discretization parameters 휀 and 𝜏? 

[Rudolph et al., 2016]

Optimal Hausdorff archives prefer 

evently spread solutions along the PF
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Update of 휀 and 𝜏 (Basic Idea) 

1.) Archive overflow: increase values of 휀 and 𝜏

2.) F(p) promising but too far from F(A) : 

restart 휀 and 𝜏
new connected component of the PF may be found

or a new (local) front which makes current values

of the discretization parameters obsolete
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Results ArchiveUpdateHD

Under the assumptions of Thm 3 (e.g., no weak Pareto points in 𝑄\𝑃𝑄)

we can expect from an application of ArchiveUpdateHD:

• Quasi-monotonic behavior: 𝜏𝑖 = 𝜏+ for all i≥ 𝑖1

• Gap free approximation:   𝑑𝐻 𝐹 𝑃𝑄 , 𝐹(𝐴𝑖) ≤ 𝜏+for all i≥ 𝑖2

• Archive elements converge toward Pareto set: lim
𝑖→∞

dist 𝐴𝑖 , 𝑃𝑄 = 0

𝜏+is a (tight) upper bound on 𝑑𝐻 𝐹 𝑃𝑄 , 𝐹(𝐴𝑖) which is computed during the 

run of AU-HD with out any prior knowledge or assumption on the MOP/PF. 

[Sch. and Hernandez., 2022]
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Example 1: CONV2 (unimodal)

final archive 𝜏𝑖

estimated vs real 

approximation quality 

(𝑑𝐻 and ∆2)

box covering
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Example 2: RUD3 (multimodal)

final archive 𝜏𝑖

estimated vs real 

approximation quality 

(𝑑𝐻 and ∆2)
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Approx. Qualities (∆2) NSGA-II vs NSGA-II-A
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Base MOEA vs External Archive

NSGA-II MOEA/D SMS-EMOA
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Beyond Pareto Fronts

Archiving is not restricted to Pareto front approximations, 

but is relevant e.g. for 

• Detection of nearly optimal solutions

• Multi-objective Multimodal optimization 

(Pareto set or locally optimal solutions)

• Landscape analysis

• Particular regions of interest

(e.g., knee regions, aspiration sets)

• Bilevel multi-objective optimization

• Robust multi-objective optimization

• …  

Finally, archiving is of course also not restricted to EMO.
𝑁𝑄, of SYMPART

[Sch. et al., 2024]
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Conclusions

• Archiving in EMO, focus on PF approximations

• PF manifold → not one single ‘best’ archiver to be expected

• Examples of unbounded, implicitly bounded and a priori 

bounded archivers

• Archiving has 

• the main influence of the convergence properties of 

the algorithm

• a significant impact on the overall perofrmance of 

the algorithm 

• Existing archivers can be integrated into any MOEA

(either as alternative selection strategy or as external archivers)

Yet, archiving is still underexplored in EMO (EO)!
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Open Issues

• Other sets of interest

• Other problem classes

• Constraint handling (CDP, CV)

• Convergence rates

• Application to discrete problems

• Improvement of overall performance

• Interplay of algorithm elements

• External archives: 2 selection strategies used
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Thank You I



40

O. Schütze

Questions?

Emails:

• schuetze@cs.cinvestav.mx

• carlos.hernandez@iimas.unam.mx

Web pages:

• neo.cinvestav.mx/Group

• http://cihdezc.github.io/

• https://github.com/NumericalEvolution

aryOptimization/archivers

40Archivers

Thank You II

mailto:carlos.hernandez@iimas.unam.mx
mailto:carlos.hernandez@iimas.unam.mx
https://github.com/NumericalEvolutionaryOptimization/archivers
https://github.com/NumericalEvolutionaryOptimization/archivers
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