
A Gentle Introduction to
Theory (for Non-
Theoreticians)

Benjamin Doerr
École Polytechnique

Benh LIEU SONG, CC BY-SA 3.0,
via Wikimedia Commons

Benjamin Doerr: Introduction to theory (tutorial)

Instructor: Benjamin Doerr

 Benjamin Doerr is a full professor at the French École Polytechnique.

 He received his diploma (1998), PhD (2000) and habilitation (2005) in
mathematics from the university of Kiel (Germany). His research area is the
theory of both problem-specific algorithms and randomized search heuristics like
evolutionary algorithms. Major contributions to the latter include runtime analyses
for existing evolutionary algorithms, the determination of optimal parameter
values, and the theory-guided design of novel operators, on-the-fly parameter
choices, and whole new evolutionary algorithms.

 Together with Frank Neumann and Ingo Wegener, Benjamin Doerr founded the
theory track at GECCO and served as its co-chair 2007-2009, 2014, and 2023-
2024. He is a member of the editorial boards of several journals, among them
Artificial Intelligence, Evolutionary Computation, Natural Computing, and
Transactions on Evolutionary Computation. Together with Frank Neumann, he
edited the book Theory of Evolutionary Computation – Recent Developments in
Discrete Optimization (Springer 2020).

2

Benjamin Doerr: Introduction to theory (tutorial)

This Tutorial: A Real Introduction to Theory

 GECCO, CEC, PPSN always had a good number of theory tutorials.

 They did a great job in educating the theory community.

 However, not much was offered for those attendees which

 have little experience with theory,

 but want to understand what the theory people are doing (and why).

 This is the target audience of this tutorial. We try to answer those
questions which come before the classic theory tutorials.

3

Benjamin Doerr: Introduction to theory (tutorial)

Questions Answered in This Tutorial

 What is theory in evolutionary computation (EC)?

 Why do theory? How does it help us understanding EC?

 How do I read and interpret a theory result?

 What type of results can I expect from theory?

 What are current “hot topics” in the theory of EC?

4

Benjamin Doerr: Introduction to theory (tutorial)

Focus: EAs for Discrete Search Spaces

 In principle, all we say is valid for all subareas of theory.

 However, to not overload you with definitions and notation, we focus
mostly on classic evolutionary algorithms for discrete search spaces.

 Hence we intentionally omit examples from

 continuous optimization, e.g., CMA-ES, differential evolution, …

 genetic programming, ant colony optimizers, swarm intelligence, …

 exception: a discussion of the recent theory advances on
estimation-of-distribution algorithms in part V.

5

Benjamin Doerr: Introduction to theory (tutorial)

The Most Important Point Before We Start

 If I’m saying things you don’t understand or if you want to know more
than what I had planned to discuss,

don’t be shy to ask questions at any time!
 This is “your” tutorial and I want it to be as useful for you as possible.

 I’m trying to improve the tutorial each time I give it. For this, your
feedback (positive and negative) is greatly appreciated!

 So talk to me after the tutorial, during the coffee breaks, social
event, late-night beer drinking, … or send me an email.

6

Benjamin Doerr: Introduction to theory (tutorial)

Outline of the Tutorial

 Part I: What is Theory of EC?

 Part II: A Guided Walk Through a Famous Theory Result

 an illustrative example to convey the main messages of this tutorial

 Part III: How Theory Has Contributed to a Better Understanding of EAs

 3 ways how theory has an impact

 Part IV: How Theory Can Help YOU

 Part V: Current Hot Topics in the Theory of EAs

 EDAs, dynamic&noisy optimization, dynamic/adaptive parameter
choices, EMO (NSGA-II)

 Part VI: Concluding Remarks

 Appendix: glossary, references

7

Benjamin Doerr: Introduction to theory (tutorial)

Part I:

What is
Theory of EC

8

 Definition: theory of EC

 What can you achieve with theoretical research?

 Comparison: theory vs. experiments

Benjamin Doerr: Introduction to theory (tutorial)

What Do We Mean With Theory?

 Definition (for this tutorial):
By theory, we mean results proven with mathematical rigor.

 Mathematical rigor:

 make precise the evolutionary algorithm (EA) you regard

 make precise the problem you try to solve

 formulate a precise statement how this EA solves this problem

 prove this statement

 Example:
Theorem: The (1+1) EA generates the optimum of the OneMax function
in an expected number of at most iterations.
Proof: blah, blah, …

9

Benjamin Doerr: Introduction to theory (tutorial)

Other Notions of Theory

 Theory: Mathematically proven results

 Experimentally guided theory: Set up an artificial experiment to
experimentally analyze a particular question.

 Example: add a neutrality bit to two classic test functions, run a GA
on these, and derive insight from the outcomes of the experiments.

 Descriptive theory: Use mathematical notation to describe, measure, or
quantify observations.

 Example: fitness-distance correlation, schema theory, …

 “Theories”: Unproven claims that (mis-)guide our thinking.

 Example: building block hypothesis

10

Benjamin Doerr: Introduction to theory (tutorial)

Other Notions of Theory

 Theory: Mathematically proven results

============<in this tutorial, we focus on the above>============

 Experimentally guided theory: Set up an artificial experiment to
experimentally analyze a particular question.

 Example: add a neutrality bit to two classic test functions, run a GA
on these, and derive insight from the outcomes of the experiments.

 Descriptive theory: Use mathematical notation to describe, measure, or
quantify observations.

 Example: fitness-distance correlation, schema theory, …

 “Theories”: Unproven claims that (mis-)guide our thinking.

 Example: building block hypothesis

11

Benjamin Doerr: Introduction to theory (tutorial)

Why Do Theory? Because of the Results!

 Absolute guarantee that the result is correct (it is proven).

 You can be sure.

 Reviewers can check truly the correctness of results.

 Readers can trust reviewers or, with moderate maths skills, check the
correctness themselves.

 Many results can only be obtained by theory; e.g., because you make a
statement on a very large or even infinite set:

 all bit-strings of length ,

 all TSP instances on vertices,

 all input sizes ,

 all possible algorithms for a problem.

12

Benjamin Doerr: Introduction to theory (tutorial)

Why Do Theory? Because of the Approach!

 A proof (automatically) gives insight in

 how things work (working principles of EC),

 why the result is as it is.

 Self-correcting/self-guiding effect of proving:

 When proving a result, you are automatically pointed to the questions
that need more thought.

 You see what exactly is the bottleneck for a result.

 Trigger for new ideas:

 clarifying nature of mathematics,

 playful nature of mathematicians.

13

Benjamin Doerr: Introduction to theory (tutorial)

Limitations of Theoretical Research

 Restricted scope: So far, mostly simple algorithms could be analyzed for
simple optimization problems.

 Less precise results: Constants are not tight, or not explicit as in
“ ଶ ” = “less than ଶ for some unspecified constant ”.

 Less specific results:

 You obtain a (weaker) guarantee for all problem instances,

 but not a stronger guarantee for those instances which show up in
your application.

 Theory results can be very difficult to obtain: The proof might be short
and easy to read, but finding it took long hours.

 Usually, there is no generic way to the solution, but you need a
completely new, clever idea.

14

Benjamin Doerr: Introduction to theory (tutorial)

Part II:

A Guided Walk Through a
Famous Theory Result

15

We use a simple but famous theory result

 as an example for a non-trivial result

 to show how to read a theory result

 to explain the meaning of such a theoretical statement

 to illustrate what we just discussed

Benjamin Doerr: Introduction to theory (tutorial)

A Famous Result

Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear
function

ଵ

ୀଵ

ଵ

in an expected number of iterations.

Reference:
[DJW02] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1)
evolutionary algorithm. Theoretical Computer Science, 276:51–81, 2002.

– Famous paper (500+ citations, maybe the most-cited pure EA theory paper)

– Famous problem (20+ papers working on exactly this problem, many highly
useful methods were developed in trying to solve this problem)

16

Benjamin Doerr: Introduction to theory (tutorial)

Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear
function

ଵ

ୀଵ

ଵ

in an expected number of iterations.

(1+1) evolutionary algorithm to maximize 𝒏 :
1. choose uniformly at random
2. while not terminate do
3. generate from by flipping each bit independently

with probability (“standard bit mutation”)
4. if then
5. output

Reading This Result

17

at most for some
unspecified constant

a hidden all-quantifier: we claim
the result for all ଵ

performance measure: number of iterations or
fitness evaluations, but not runtime in seconds

A mathematically
proven result

should be made
precise in the paper to
avoid any ambiguity

Benjamin Doerr: Introduction to theory (tutorial)

Why is This a Good Result?

 Gives a proven performance guarantee

 General: a statement for all linear functions in all dimensions

 Non-trivial

 Surprising

 Provides insight in how EAs work

18

 more on these 3 items
on the next slides

Benjamin Doerr: Introduction to theory (tutorial)

Non-Trivial: Hard to Prove & Hard to Explain
Why it Should be True

19

Benjamin Doerr: Introduction to theory (tutorial)

Non-Trivial: Hard to Prove & Hard to Explain
Why it Should be True

 Hard to prove

 7 pages complicated maths proof in [DJW02].

 We can do better now, but only because we developed deep analysis
techniques (drift analysis).

 No “easy” explanation

 monotonicity: flipping a 0 to a 1 always increases the fitness

 Are monotonic functions easy to optimize for a EAs (because you
only need to collect 1s)?

 No! Exponential runtimes can occur [DJS+13, LS18].

 separability: a linear function can be written as a sum of functions

such that the depend on disjoint sets of bits

 Is the optimization time of such a sum small?

 No! The can interact badly [DSW13].

20

Benjamin Doerr: Introduction to theory (tutorial)

Surprising: Same Runtime For Very
Different Fitness Landscapes

 Example 1: OneMax, the function counting the number of 1s in a string,

ଵ

ୀଵ :

 unique global maximum at

 perfect fitness distance correlation: if a search point has higher
fitness, then it is closer to the global optimum.

 Example 2: BinaryValue (BinVal for short), the function mapping a bit-
string to the number it represents in binary

ଵ

ି

ୀଵ :

 unique global maximum at

 very low fitness-distance correlation:

 ିଵ, distance to optimum is ,

 ିଵ , distance to optimum is .

21

Benjamin Doerr: Introduction to theory (tutorial)

Insight in Working Principles

 Insight from the result:

 Even if there is a low fitness-distance correlation (as is the case for
the BinVal function), EAs can be very efficient optimizers.

 Insight from the proof:

 The Hamming distance ∗ of to the optimum ∗ measures
very well the quality of the search point :

 The expected number ௫ of iterations to find the optimum starting
from satisfies

∗
௫

∗

independent of .

22

Benjamin Doerr: Introduction to theory (tutorial)

A Glimpse on a Modern Proof

 Theorem [DJW12]: For all problem sizes and all linear functions

with ଵ ଵ the (1+1) EA finds the optimum ∗ of in an
expected number of at most iterations.

 1st proof idea: Without loss, we can assume that ଵ ଶ .

 2nd proof idea: Regard an artificial fitness measure!

 Define
ିଵ

ୀଵ “artificial weights” from down to

ଵ

 Key lemma: Consider the (1+1) EA optimizing the original . Assume that
some iteration starts with the search point and ends with the random
search point . Then

∗ ᇱ ∗

 expected artificial fitness distance reduces by a factor of
ଵ

ସ

 3rd proof idea: Multiplicative drift theorem translates this expected progress w.r.t.
the artificial fitness into a runtime bound.

 Roughly: the expected runtime is at most the number of iterations needed to
get the expected artificial fitness distance below one.

23

DJW02: Droste, Jansen, Wegener
DJW12: Doerr, Johannsen, Winzen

Benjamin Doerr: Introduction to theory (tutorial)

Multiplicative Drift Theorem

 Theorem [DJW12]: Let ଵ ଶ be a sequence of random variables taking
values in the set . Let . Assume that for all , we have

௧ାଵ ௧

Let ௧ . Then

 On the previous slide, this theorem was used with

 ,

 ௧
∗ (௧) ,

 and the estimate .

 Bibliographical notes: Artificial fitness functions very similar to this were already used in
Droste, Jansen, and Wegener [DJW02] (conference version [DJW98b]). Drift analysis
(“translating progress into runtime”) was introduced to the field by He and Yao [HY01] to
give a simpler proof of the [DJW02] result. A different approach was given by Jägersküpper
[Jäg08]. The multiplicative drift theorem by D., Johannsen, and Winzen [DJW12]
(conference version [DJW10]) proves the [DJW02] result in one page and is one of the
most-used tools today.

24

“Drift analysis”:
Translate

expected progress
into

expected (run-)time

Benjamin Doerr: Introduction to theory (tutorial)

Limitations of the Linear Functions Result

 An unrealistically simple EA: the (1+1) EA.

 Linear functions are “trivial” artificial test function.

 Not a precise result, but

 only in [DJW02]

 or a most likely significantly too large constant in the [DJW12] result.

 Two types of replies (details on the following slides):

 Despite these limitations, we gain insight.

 The 2002-results was the start, now we know much more.

25

Benjamin Doerr: Introduction to theory (tutorial)

Limitation 1: Only the Simple (1+1) EA

 Insight: Using nothing else than standard bit mutation is enough to
optimize problems with low fitness-distance correlation.

 Newer Result: The (1+) EA optimizes any linear function in expected
time (= number of fitness evaluations)

This bound is sharp for BinVal, but not for OneMax, where the expected
optimization time is

୪୭ ୪୭ ఒ

୪୭

 Not all linear functions have the same optimization time [DK15]!

 We are optimistic that we will make progress towards more complicated
EAs. Known open problems include, e.g., how crossover-based
algorithms and ant colony optimizers optimize linear functions.

26

Benjamin Doerr: Introduction to theory (tutorial)

Limitation 2: Only Linear Functions

 Insight: Linear functions are easy, monotonic functions can be difficult
 some understanding which problems are easy and hard for EAs.

 Newer runtime analyses for the (1+1) EA (and some other algorithms):

 Eulerian cycles [Neu04, DHN07, DKS07, DJ07],

 shortest paths [STW04, DHK07, BBD+09],

 minimum spanning trees [NW07, DJ10, Wit14],

 knapsack [WPN16, NS18, NS19, XNNS21 and many more],

 and many other poly-time optimization problems.

 We also have some results on approximate solutions for NP-complete
problems like partition [Wit05], vertex cover [FHH+09, OHY09], maximum
cliques [Sto06], graph coloring [SZ10, BS19].

 We have some results on dynamic and noisy optimization (part V).

27

Benjamin Doerr: Introduction to theory (tutorial)

Limitation 3: Only Asymptotic Results

 Insight: Linear functions are easy for the (1+1) EA.

 For this insight, a rough result like is enough.

 Newer result [Wit13]: The exp. runtime of the (1+1) EA on any linear
function is , that is, at most for some constant .

 Asymptotic result, but the asymptotics are only in a lower order term.

 [Wit13] also has a non-asymptotic result, but it is harder to digest:

28

Benjamin Doerr: Introduction to theory (tutorial)

Summary “Guided Tour”

 We have seen one of the most influential theory results:
The (1+1) EA optimizes any linear function in iterations.

 We have seen how to read and understand such a result.

 We have seen why this result is important:

 non-trivial and surprising,

 gives insights in how EAs work, and

 spurred the development of many important tools (e.g., drift analysis).

 We have discussed the limitations of this theory result.

29

Benjamin Doerr: Introduction to theory (tutorial)

Part III:

How Theory Can Help
Understanding and

Designing EAs

30

1. Debunk misconceptions

2. Help choosing the right parameters, representations, operators, and
algorithms

3. Invent new representations, operators, and algorithms

Benjamin Doerr: Introduction to theory (tutorial)

Contribution 1: Debunk Misconceptions

 When working with EAs, it is easy to conjecture some general rule from
observations, but without theory it is hard to distinguish between “we
often observe” and “it is true that”.

 Reason: It is often hard to falsify a conjecture experimentally.

 The conjecture might be true “often enough”, but not in general.

 Danger: Misconceptions prevail in the EA community and misguide the
future development of EAs.

 2 (light) examples on the following slides

31

Benjamin Doerr: Introduction to theory (tutorial)

Misconception 1: Functions Without Local
Optima are Easy to Optimize

 A function has no local optima if each non-optimal search point has
a neighbor with better fitness. “unimodal function”

 If () is not optimal, then by flipping a single bit of you can reach a
better solution.

 Misconception: Such functions are easy to optimize…

 “because all you need is flipping single bits”.

 Truth: There are unimodal functions such that all reasonable EAs
with high probability need super-polynomial time to find a reasonable solution
[HGD94,Rud96,DJW98a].

 Reason: yes, it is easy to find a better neighbor if you’re not optimal yet, but you
may need to do this an exponential number of times because all improving paths
to the optimum are that long

32

Benjamin Doerr: Introduction to theory (tutorial)

Misconception 2: Monotonic Functions are
Easy to Optimize for EAs

 A function is monotonically strictly increasing (monotonic) if the
fitness increases whenever you flip a 0-bit into 1.

 strong version of “no local optima”: each neighbor with additional ones is better

 Misconception: Such functions are easy to optimize for standard EAs…

 because already simple hill-climbers flipping single bits (e.g., randomized local
search) do the job in time .

 Truth: There are (many) monotonic functions such that with high probability the
(1+1) EA with mutation probability needs exponential time to find the optimum
[DJS+13].

 The can be lowered to [LS18].

 Same result for many mutation-based algorithms [Len20].

 For any there is a and a monotonic such that the (+1) EA with
mutation rate needs super-polynomial time to optimize [LZ21].

33

Benjamin Doerr: Introduction to theory (tutorial)

Summary Misconceptions

 Intuitive reasoning or experimental observations can lead to wrong beliefs.

 It is hard to falsify them experimentally, because

 counter-examples may be rare (so random search does not find them),

 counter-examples may have an unexpected structure.

 There is nothing wrong with keeping these beliefs as “rules of thumb”, but
it is important to know what is a rule of thumb and what is really the truth.

 Theory is the right tool for this!

34

Benjamin Doerr: Introduction to theory (tutorial)

Contribution 2: Help With Design Choices

 When designing an EA, you have to choose between a huge number of
design alternatives: the basic algorithm, the operators and
representations, the parameters, ….

 Theory can guide you with deep and reliable analyses of scenarios similar
to yours.

 The question “what is a similar scenario” remains, but you have the
same problem when looking for advice from experimental research.

 Examples:

 use of fitness-proportionate selection

 representations in graph problems
 use of crossover: [JW02,SW04,FW04,FW05,JW05,Sud05,WJ07,RWP08,DT09,NT10,LY11,KST11,

DJK+11,DHK12a,DJK+13,DFK+16,Sud17,DFK+18,CO18,CO20,OSW20,Sut21,FKR+22,LM24,
DEJK24]

 parameters: [Müh92,Bäc93,GKS99,JW00,Prü04,JJW05,Wit06,JS07,BDN10,Leh10,Leh11,LY12,
Sud13,Wit13,RS14,DK15,GW17,DLMN17,ADFH18,ADY19,AD20,BBD21a,AD21,Doe21]

35

 more on these 2
on the next slides

Benjamin Doerr: Introduction to theory (tutorial)

Design Choices:
Fitness-Proportionate Selection

 Theorem [OW15]: When the Simple GA (Goldberg [Gol89]) with a
population size .ଶସଽଽ or less optimizes the OneMax test function

ଵ , then in any polynomial number of iterations

it does not find an individual that is 1% better than a random individual.

 Interpretation: If fitness-proportionate has difficulties already on OneMax,
use it with caution! Similar results [HJKN08, NOW09]

36

Benjamin Doerr: Introduction to theory (tutorial)

Design Choices: Representations

 Several theoretical works on shortest path problems [STW04, DHK07,
BBD+09]. All use a vertex-based representation:

 each vertex points to its predecessor in the path

 mutation: rewire a random vertex to a random neighbor

 [DJ10]: How about an edge-based representation?

 individuals are set of edges (forming reasonable paths)

 mutation: add a random edge (and delete the one made obsolete)

 Result: All previous algorithms become faster by a factor of
 మ

|ா|

 [JOZ13]: edge-based representation also preferable for vertex cover

 Interpretation: While there is no guarantee for success, it may be useful
to think of an edge-based representation for graph-algorithmic problems

37

typical theory-
driven curiosity

Benjamin Doerr: Introduction to theory (tutorial)

Summary Design Choices

 By rigorously analyzing simplified situations, theory can suggest

 which algorithm to use,

 which representation to use,

 which operators to use,

 how to choose parameters.

 As with all particular research results, the question remains how
representative such a result is for the general usage of EAs.

38

Benjamin Doerr: Introduction to theory (tutorial)

Contribution 3: Invent New Operators
and Algorithms

 Theory can also, both via the deep understanding gained from proofs
and by “theory-driven curiosity” invent new operators and algorithms.

 Example: What is the right way to do mutation [DLMN17]?

 Outline (of the next 10+ slides):

 What is “known” about mutation

 A thorough analysis how simple EAs optimize the jump benchmark

 Some unexpected conclusions [best-paper award in the GECCO
2017 Genetic Algorithms track]

 2nd example [not shown]: Design of the GA based on black-
box complexity insight [DDE13, GP14, DDE15, DD15a, DD15b, Doe16, BD17,
DD18, KAD19, ADK19, BB19, ABD20, AD20, BB20, FS22, ABD22, ADK22, ABD24]

39

Benjamin Doerr: Introduction to theory (tutorial)

General Belief on Mutation

 Note: We only deal with bit-string representations, that is, the search
space is for some .

 [Similar results hold for other discrete search spaces, e.g.,
permutations [DGI24]]

 General belief: The right way of doing mutation is standard bit mutation,
that is, flipping each bit independently with some probability (“mut. rate”).

 Global operator: from any parent you can generate any offspring
(possibly with very small probability).
 Algorithms cannot get stuck forever in a local optimum.

 General recommendation: Use a small mutation rate like .
See, e.g., [Bäc96, BFM97, Och02].

40

Benjamin Doerr: Introduction to theory (tutorial)

Informal Justifications for

 Imitate local search / hill-climbing: A mutation rate of maximizes the
probability to flip a single bit.

 Reducing the rate by a factor of reduces this prob. by a factor of .

 Increasing the rate by a factor of reduces this prob. by a factor of ().

 Mutation is destructive: If your current search point has a Hamming
distance ∗ of less than from the optimum ∗, then the offspring
has (in expectation) a larger Hamming distance and this increase is
proportional to :

 ∗ ∗ ∗

41

at most for some constant
at least for some constant
both and

Benjamin Doerr: Introduction to theory (tutorial)

Proven Results Supporting

 Optimal mutation rates for (1+1) EA:

ଵ

for OneMax [Müh92; Bäc93, GKS99]

ଵ.ହଽ

for LeadingOnes [BDN10]

ଵ

for all linear functions [Wit13]

 monotonic functions [Jan07, DJSWZ13, LS18, LMS19]:

, gives a expected runtime on all monotonic

functions with unique optimum,

for some gives ଶ ,

ଶ.ଵଷ…

gives an exponential runtime on some monotonic functions.

 When , then the optimal mutation rate for the EA optimizing

OneMax is
ଵ

[GW17].

42

Theory supports
using standard bit
mutation with
mutation rate
around

Benjamin Doerr: Introduction to theory (tutorial)

Really?

 Can we really say that is good (at least “usually”)?

 More provocative: Can we really say that standard bit mutation is the
right way of doing mutation?

 Note: All results regard easy unimodal optimization problems.

 OneMax, LeadingOnes, linear functions, monotonic functions.

 Flipping single bits is a very good way of making progress

 Let’s look at an example with local optima…

43

Benjamin Doerr: Introduction to theory (tutorial)

Question: What is the Best Mutation Rate for the
(1+1) EA on the Jump Functions Benchmark?

 ,: fitness of an -bit string is the number ଵ of ones, except if

ଵ , then ଵ [DJW02]

 Novelty (for a theoretical analysis of the mutation rate): There are non-
trivial local optima: all with ଵ .

44

ଵ

,

global optimum
∗

Benjamin Doerr: Introduction to theory (tutorial)

Runtime Analysis

 Let denote the expected optimization time of the (1+1) EA
optimizing , with mutation rate .

 Theorem: For all and ,

𝒎 𝒏ି𝒎 𝒎 𝒏ି𝒎 ିଵ

 Let ௧ ௧ .

 Theorem: If , then ௧ ⁄

ଵ ⁄

and is essentially the only optimal mutation rate.

 The right mutation rate is much higher than the usual and it
gives a huge speed-up!

45

Benjamin Doerr: Introduction to theory (tutorial)

Missing the Optimal Mutation Rate

 Theorem: If or , then

ଶ

௧

 In simple words: is essentially the optimal mutation rate, but a small
deviation increases the runtime massively.

 Dilemma: To find the right mutation rate, you need to know “the ”, that
is, how many bits you need to flip to leave the local optimum .

 Math. reason for the dilemma: When flipping bits independently at random
(standard bit mutation), the Hamming distance of parent and
offspring is strongly concentrated around the mean.

 Exponential tails of the binomial distribution

 Maybe standard bit mutation is not the right thing to do?

46

Benjamin Doerr: Introduction to theory (tutorial)

From This Analysis to a
New Mutation Operator

 Recap: What do we need?

 No strong concentration of

 Larger numbers of bits flip with reasonable probability

 1-bit flips occur with constant probability (easy hill-climbing)

 Solution: Heavy-tailed mutation (with parameter , say).

 choose randomly with ିఉ [power-law].

 perform standard bit mutation with mutation rate .

 Some maths:

 The probability to flip bits is ିఉ . No exponential tails

 , e.g., 32% for (37% for classic mut.)

47

Note: Random mut-rates have been used
before in theory, but not heavy-tailed and

only for special purposes (unknown solution
length [DDK17], higher arities [DDK18])

Benjamin Doerr: Introduction to theory (tutorial)

Heavy-tailed Mutation: Results

 Theorem: The (1+1) EA with heavy-tailed mutation () has an
expected optimization time on , of

ఉି.ହ
௧

 This one algorithm for all is only an 𝜷ି𝟎.𝟓 factor slower than
the EA using the optimal mutation rate (depending on)!

 “One size fits all” (apart from a small polynomial factor).

 Compared to the classic EA, this is a speed-up by a factor of ().

 Lower bound (not important, but beautiful (also the proof)): The loss of slightly more than
.ହ – by taking – is unavoidable:

 For sufficiently large, any distribution on the mutation rates in has an
such that ௧ .

48

Benjamin Doerr: Introduction to theory (tutorial)

Experiments (m=8, n=20..150)

49

Runtime of the (1+1) EA on ଼, (average over 1000 runs). To allow this number of
experiments, the runs where stopped once the local optimum was reached and the remaining
runtime was sampled directly from the geometric distribution describing this waiting time.

Benjamin Doerr: Introduction to theory (tutorial)

Beyond Jump Functions

 Example (maximum matching): Let be an undirected graph having
edges. A matching is a set of non-intersecting edges. Let be the size

of a maximum matching. Let be constant and
ଶ

ଶାଵ
.

 The classic (1+1) EA finds a matching of size
ை்

ଵାఌ
in an expected

number of at most ,ఌ iterations, where ,ఌ is some number in
ଶାଶ . [GW03]

 The (1+1) EA with heavy-tailed mutation does the same in expected

time of at most
𝒆

𝒎

𝒎
𝜷ି𝟎.𝟓

𝒏,𝜺.

 2nd example: Vertex cover in bipartite graphs (details omitted).

50

Riemann zeta function:
for

Benjamin Doerr: Introduction to theory (tutorial)

Performance in Classic Results

 Since the heavy-tailed mutation operator flips any constant number of
bits with constant probability, many classic results for the standard (1+1)
EA remain valid (apart from constant factor changes):

 runtime on OneMax

 ଶ runtime on LeadingOnes

 ଶ
୫ୟ୶ runtime on MinimumSpanningTree [NW07]

 and many others…

 The largest expected runtime that can occur on an is …

 for the classic (1+1) EA: Trap function [DJW02], minimum
makespan scheduling [Wit05]

 ఉ for the heavy-tailed (1+1) EA

51

Benjamin Doerr: Introduction to theory (tutorial)

Working Principle of Heavy-Tailed Mutation

 Reduce the probability of a 1-bit flip slightly (say from 37% to 32%)

 Distribute this free probability mass in a power-law fashion on all other -
bit flips

 increases the prob. for a -bit flip from roughly
ଵ

⋅!
to roughly ିఉ

 reduces the waiting time for a -bit flip from to ఉ

 This redistribution of probability mass is a good deal, because we usually
spend much more time on finding a good multi-bit flip

 ,: spend time on all 1-bit flips, but time to find

the one necessary -bit flip

 These elementary observations are a good reason to believe that heavy-
tailed mutation is advantageous for a wide range of multi-modal problems.

 Other theory works: [FQW18, FGQW18, WQT18, ABD20a, ABD20b, DZ21, QGWF21,
BBD23, DQ23a, ZD24, ABD24]

52
Choose all 3 parameters of an algorithm heavy-tailed and

get essentially the performance of optimal parameters.

Benjamin Doerr: Introduction to theory (tutorial)

Heavy-Tailed “Fast”

 Heavy-tailed mutation has been experimented with in continuous
optimization (with mixed results as far as I understand):

 Simulated annealing [Szu, Hartley ‘87]

 Evolutionary programming [Yao, Lui, Lin ‘99]

 Evolution strategies [Yao, Lui ’97; Hansen, Gemperle, Auger,
Koumoutsakos ’06; Schaul, Glasmachers, Schmidthuber ‘11]

 Estimation of distribution algorithms [Posik ’09, ‘10]

 Algorithms using heavy-tailed mutation were called fast by their
inventors, e.g., fast simulated annealing.

 We propose to call our mutation fast mutation and the resulting
EAs fast, e.g., ఉ.

53

Benjamin Doerr: Introduction to theory (tutorial)

Summary: Fast Mutation on
– A Theory-Guided Invention

 By rigorously analyzing the performance of a simple mutation-based EA on the non-
unimodal JUMP fitness landscape, we observe that

 higher mutation rates are useful to leave local optima

 standard bit mutation with a fixed rate is sub-optimal on most problems

 Solution: Use standard bit mutation, but with a random mutation rate sampled from
a power-law distribution

 () factor speed-up for , and many other problems

 Does this work in practice? First results are promising

 Neumann, Xie, Neumann [NXN22]: Knapsack with stochastic profits

 D, Krejca, Vu [DKV24] (GECCO’24: BP nominee ECOM): Target set selection

54

Benjamin Doerr: Introduction to theory (tutorial)

Summary Part 3

Theory has contributed to the understanding and use of EAs by

 debunking misbeliefs (drawing a clear line between rules of thumb and
proven fact)

 e.g., “no local optima” and “monotonic” do not mean “easy”

 giving hints how to choose parameters, representations, operators, and
algorithms

 e.g., if fitness-proportionate selection with comma selection cannot
even optimize OneMax, maybe it is not a good combination

 inventing new representations, operators, and algorithms: this is fueled
by the deep understanding gained in theoretical analyses and “theory-
driven curiosity”

 e.g., if leaving local optima generally needs more bits to be flipped,
then we need a mutation operator that does so sufficiently often
 heavy-tailed mutation

55

Benjamin Doerr: Introduction to theory (tutorial)

Part IV:

How Theory Can Help YOU:
Theory-Style Thinking

56

Benjamin Doerr: Introduction to theory (tutorial)

How Theory Can Help YOU

 Message of this talk so far: Theory people can produce mathematical
analyses and from these gain insights that are useful also outside theory.

 Two ways how you can profit from theory:

 Try to read some theory works and (at least) understand their meaning
for the general use of EAs
 could be difficult

 Try to imitate the theory approach (without proving everything)
 could be easy

 Next few slides: How you could have invented the heavy-tailed
mutation operator with theory-style thinking

57

Benjamin Doerr: Introduction to theory (tutorial)

An Example of Theory-Style Thinking

 Problem: You run your favorite evolutionary algorithm on your favorite
problem and you feel that it takes too long to leave local optima.

 You try without success all your tricks:

 parameter tuning

 landscape analysis

 asking colleagues that are true experts in experimental work

 etc.

 but nothing really solves the problem.

 You’re so desperate that you try theory-style thinking…

58

Benjamin Doerr: Introduction to theory (tutorial)

1st Step: Take a Really Simple Example
Situation

 Really simple example situation (that hopefully still is representative for
your problem of leaving local optima):

 You take a very simple optimization problem in which every reasonable
heuristic gets stuck in a local optimum jump function

 You take the most simple evolutionary algorithm you know
 the (1+1) EA with mutation rate

 Clever: You only look at the problem of leaving the local optimum (and
not at the whole runtime)

 Note: If you later see that this is too simple and not helpful, you can still
make it more complex later. But don’t be shy to start off really simple!

59

Benjamin Doerr: Introduction to theory (tutorial)

2nd Step: Analyze Your Example Precisely
and in Full Generality

 Simple example situation: The
(1+1) EA optimizes a jump function
and is already in the local optimum.

 Question: How long does it take to leave the local optimum?

 What is the probability to generate an offspring better than the local opt.?

 Local optimum: any bit-string with ones and zeroes

 To leave this, you have to flip the missing bits and not flip the other bits

 Probability for this ି

60

ଵ

,

Here

Full generality:
A formula for all

Benjamin Doerr: Introduction to theory (tutorial)

3rd Step: Generate Useful Data

 We plot the function 𝒎 𝒏ି𝒎 for
interesting values of :

 a moderate problems size , a small jump size ;

 for the mutation rate , we recall that the standard choice is . So
let’s use the scaling and take :

ସ ସ

 [type “y = (x/50)^4*(1-x/50)^46” into Google]

61

Benjamin Doerr: Introduction to theory (tutorial)

3rd Step: Generate Useful Data

 We plot the function 𝒎 𝒏ି𝒎

 a moderate problems size , a small jump size ;

 for the mutation rate , we recall that the standard choice is . So
let’s use the scaling and take :

ସ ସ

 [type “y = (x/50)^4*(1-x/50)^46” into Google]

62

Benjamin Doerr: Introduction to theory (tutorial) 63

Benjamin Doerr: Introduction to theory (tutorial) 64

Benjamin Doerr: Introduction to theory (tutorial)

Inverse Plot: Loss From Taking Rate
Instead of the Optimal Rate

65

Less than 20% of
the optimal

performance for
and

Benjamin Doerr: Introduction to theory (tutorial)

4th Step: Interpret the Data and
Find a Solution

 The plots clearly show:

 The classic mutation rate of is highly suboptimal:

 e.g., a factor-500 performance loss for

 There is no “right” mutation rate: Each rate is good for values of
that are close to only

 e.g., is perfect for , but gives only 20% of the optimal
performance for and

 Solution attempt: “average” over different mutation rates!

 e.g., take rate and each with probability 50%

66

Benjamin Doerr: Introduction to theory (tutorial)

 Averaging gives significant speed-ups for

 Next steps (omitted here): Optimize this averaging strategy

67

Benjamin Doerr: Introduction to theory (tutorial)

Summary: Theory-Style Thinking

 Step 1: Choose a really, really simple example situation.

 Step 2: Analyze this example precisely and in full generality.
 Mathematical formula

 Step 3: Use the formula to cheaply generate very trustworthy data
for any parameter values you want.

 Step 4: Interpret the data, find a solution.

68

Benjamin Doerr: Introduction to theory (tutorial)

Part V:

Current Topics of Interest
in the Theory of EC

69

 Populations

 Estimation-of-distribution algorithms (EDAs)

 Dynamic and noisy optimization

 Dynamic/adaptive parameter choices

 Fine-grained runtime analysis: fixed budget/target, parameterized complexity

 No slides:

 Co-evolution: Per Kristian Lehre is the expert

 Evolutionary Multi-objective Optimization (EMO): see the Gecco EMO tutorial
by Joshua Knowles and Weijie Zheng

Benjamin Doerr: Introduction to theory (tutorial)

 While most EAs in practice use non-trivial populations, EA theory has not
been very successful in understanding why this is good (but some
interesting results exist).

 Elitist mutation-based algorithms:

 Larger offspring population size [JJW05, DK15, GW17, GW18]:

 Allow parallel implementations (faster).

 Usually no speed-up w.r.t. the total number of fitness evaluations.

 Research question: Up to which pop. size you have a linear
speed-up, that is, the total runtime does not increase?

 Larger parent population size: Rather slows down things, but by
surprisingly little [Wit06, ADFH18, AD20].

 Both can provably give robustness against noise and dynamic
changes of the problem [JS05, GK16, LW16, DJL17, LM24, ADI24].

Hot Topic 1: Populations

70

Benjamin Doerr: Introduction to theory (tutorial)

 Non-elitist mutation-based algorithms: Need sufficiently large populations
[JS07, NOW09, Leh10, Leh11, RS14, DL16a, CDEL18, DK19, Doe20]

 Small offspring pop: you lose good solutions too quickly and cannot
really optimize (exponential runtimes).

 Large offspring pop: you usually generate a copy of a good parent and
thus imitate an elitist algorithm.

 Inside the phase transition: strange things happen [ADY19].

 Problem: Not too much argument for non-elitism in theory so far!
Example: for no choice of the population sizes, the EA shows an
interesting speed-up over the EA on jump functions [Doe22]

 Large parent population plus diversity mechanism: The diversity mechanism
can force the population to spread out, this can aid leaving local optima
[FHN07, Sto08, FHN09, DFK+16, DFK+18, CS18, OSZ19].

Populations (2)

71

Benjamin Doerr: Introduction to theory (tutorial)

 Crossover-based algorithms obviously need populations. The real
problem is getting crossover to be useful.

 Summary:

 Populations can ensure robustness and parallel speed-ups

 They are needed for non-elitist algorithms, but not many useful
applications of non-elitism could be analyzed theoretically

 They are needed for cross-over based algorithms, but again our
understanding of the usefulness of crossover remains low.

 Much work do be done!

Populations (3)

72

Benjamin Doerr: Introduction to theory (tutorial)

Hot Topic 2: Estimation-of-distribution
Algorithms (EDA)

 Example: compact Genetic Algorithm (cGA) of Harik, Lobo, and Goldberg
[HLG99] with hypothetical pop. size to maximize

 initialize

 while not terminate

 sample such that indep. for all

 sample such that indep. for all

 if then

 for all do

 Instead of storing concrete search points, EDAs develop a probabilistic
model (represented by the frequency vector in the cGA).

 much richer representation of knowledge

73

Benjamin Doerr: Introduction to theory (tutorial)

What Can EDAs Do That EAs Can’t?

 Robustness to noise:

 The cGA can cope well with normally distributed additive posterior
noise [FKKS17]

 The UMDA can cope well with 1-bit prior noise [LN19b]

 (similar result for ACO found earlier [DHK12b, FK13, ST12])

 Leaving local optima: EDAs can optimize multimodal functions faster
than many classic EAs [HS18, DK20c, Doe21, WZD21, BBD21b,
Wit23]

 different finding: on CLIFF, the cGA is (most likely) slower than the
best EAs [NSW22] (but still faster than many standard EAs)

 Model building = representing many good solutions at once:

 MIMIC can build a probabilistic model that allows to sample a huge
number of distant good solutions (experimental) [DK20a]

74

Benjamin Doerr: Introduction to theory (tutorial)

Difficulty: Genetic Drift

 When a bit has no influence on whether or is better (because other
bits have a higher impact), then the frequency performs a random walk:

௪

 with probability

௪

 with probability

௪

 otherwise

 Such random movements can bring the frequency to a random boundary
value convergence to a sub-optimal solution.

 Insufficient solution: Artificially cap the frequencies into

 Problems: If frequencies are mostly at the artificial boundaries, then…

 our probabilistic model is not richer than that of the (1+1) EA

 the performance can drop [Witt17+LSW21, LN19a+DK20c,
DZ20a,DL15+DK21b]

75

Benjamin Doerr: Introduction to theory (tutorial)

Quantifying Genetic Drift

 Good news: From many previous works specifically targeting genetic drift
[Sha02, Sha05, Sha06, FKK16] and many runtime analyses coping with
genetic drift [Dro06, DLN19, LN17, LN18, HS18, SW19, Wit19, KW20,
Doe21, LSW21], we now understand genetic drift well.

 Theorem (stated for the cGA only): Assume that the cGA optimizes a
function with a neutral bit.

 The first time the frequency of this bit is at the boundary, is ଶ .

 The first time this frequencies leaves is ଶ .

 The probability that this frequency leaves the interval
in the first iterations, is at most

ଶ ଶ

 Advice to the practitioner: If you want to use a cGA for iterations, set
the parameter somewhat larger than .

76

Benjamin Doerr: Introduction to theory (tutorial)

Overcoming Genetic Drift

Automated ways to set the parameters right:

 Parallel runs with diverse parameter values [Doe21]

 Smart restarts: Restart with a larger when the theorem on the previous
slide says that genetic drift could have occurred [DZ20a,ZD23a]

EDA variants trying to avoid genetic drift outright:

 stable-cGA [FKK16]: cGA with an artificially modified frequency update.

 runtime on LeadingOnes

 exponential runtime on OneMax [DK20b].

 sig-cGA [DK20b, WZD21]: regards a longer history and changes
frequencies only when there is sufficient evidence for it

 runtime on OneMax, LeadingOnes, and
DeceivingLeadingBlocks

77

Benjamin Doerr: Introduction to theory (tutorial)

Summary: EDA Theory

 Significant progress in the last 8 years:

 many runtime analyses, many strong methods

 understanding genetic drift.

 Cool particular results:

 EDAs work well in the presence of noise

 EDAs can leave local optima quicker than most EAs

 Many open problems:

 Tight runtime bounds for classic problems (OneMax)

 Theory for multi-variate EDAs (no result yet)

78

Benjamin Doerr: Introduction to theory (tutorial)

Hot Topic 3:
Dynamic and Noisy Optimization

 Dynamic optimization: The problem to be solved changes over time

 Noisy optimization: Access to the problem data stochastically disturbed

 General belief: Due to their randomized and problem-unspecific nature,
EAs can cope well with such (stochastic) disturbances

79

Benjamin Doerr: Introduction to theory (tutorial)

Dynamic OneMax

 First theory result (Droste [Dro02]):

 OneMax function with optimum : ௭

 Dynamic OneMax with 1-bit dynamics: in each iteration, with some small
probability , the current instance ௭ is replaced by ௬, where is a
random neighbor of (=a random bit of is flipped).

 Result: If
୪୬

, then the (1+1) EA finds the optimum of this dynamic

OneMax problem in ାଵା ଵ iterations (in expectation).

 Bit-wise dynamics: is obtained from by flipping each bit independently with

probability ᇱ ୪୬

మ (expected distance same as above).

 Droste [Dro03]: Runtime on OneMax is ସାଵ ଵ .

 Kötzing, Lissovoi, Witt [KLW15]: Improved to ଵ.ାଶ .

 Dang-Nhu et al. [DNDD+18]: Improved to ଵ.ଷଽା .

80

Benjamin Doerr: Introduction to theory (tutorial)

Interpretation of These Results

 EAs are surprisingly robust to dynamically changing problem instances!

 Example: 1-bit dynamics with
୪୬

.

 In average, every

 ୪୬
iterations the optimum moves to a neighbor.

 We lose a fitness level (almost always).

 If the fitness distance is , then we need a roughly

ௗ
iterations to improve the

fitness (without dynamic changes).

 When close to the optimum (constant),

 it takes expected time to gain one fitness level without dynamics,

 but we lose expected fitness levels because of the dynamic.

 Despite this, the EA finds the optimum in polynomial time.

81

Benjamin Doerr: Introduction to theory (tutorial)

Why?

 From the proofs in Dang-Nhu et al. [DNDD+18] it seems that EAs make progress
by repeatedly

 hoping for a phase of few dynamic changes

 and then making exceptionally fast progress.
 Supports the general belief that the randomized nature of EAs is the
reason for their robustness

82

A plot of a typical run (fitness
distance over time) for

and 1-bit dynamic with
୪୬

.

Warning: If the fitness-
distance correlation is

weak, EAs find it harder
to reoptimize [DDN19].

Benjamin Doerr: Introduction to theory (tutorial)

Noisy Optimization

 Much more research on noisy optimization (started again by Droste [Dro04]).

 Typical setting: Noisy access to the fitness function, that is, some fitness
evaluations return a wrong value.

 Prior noise models: Instead of , the EA learns ᇱ for some
stochastically disturbed version of .

 1-bit noise: With probability , you learn the fitness of a random neighbor
of .

 Bit-wise noise: Obtain ᇱ from by flipping each bit independently with
probability and return ᇱ .

 Posterior noise: Return a disturbed version of , e.g. where
follows a normal distribution.

83

Benjamin Doerr: Introduction to theory (tutorial)

Noisy Optimization: Results for the (1+1) EA

 OneMax (Droste [Dro04], Gießen, Kötzing [GK16], Dang-Nhu et al. [DNDD+18]):

 when
ఉ ୪୬ ୪୬

(1-bit noise),

ఊ ୪୬ ୪

మ (bit-wise noise)

 polynomial time when
୪୭

,

୪୭

మ

 super-polynomial time for stronger noise.

 LeadingOnes ([GK16], Qian, Bian, Jiang, Tang [QBJT19], Sudholt [Sud21]):

 ଶ when ିଶ , ିଷ

 polynomial when
୪୭

మ ,
୪୭

య

 super-polynomial for stronger noise.

 Bottom line: 1-bit and bit-wise noise behave similar when .

 EA is somewhat robust, but not very robust; worse for LeadingOnes.

84

Benjamin Doerr: Introduction to theory (tutorial)

Larger Populations: Additional Robustness

 (+) EA on OneMax [GK16]: 1-bit noise with strength ,
୪୭ ଵହ

 noise-less runtime of fitness evaluations.

 (1+) EA on OneMax:

 [GK16]: 1-bit noise with strength ,
 ୪୭

 runtime ଶ ିଵ fitness evaluations.

 Antipov, D., Ivanova [ADI24] For bit-wise noise with any rate ିଵ , a
population size of suffices to obtain the noise-less runtime of

୪୭ ୪୭

୪୭
f-evals.

 (1+) EA on LeadingOnes [GK16,Sud21]: 1-bit noise with strength or bit-wise
noise with strength . For resp. ଶ , , and

, we have the noise-less runtime of ଶ .

 Already moderate population sizes massively increase the robustness to noise!

85

Benjamin Doerr: Introduction to theory (tutorial)

Additional Robustness from Resampling

 Resampling: Evaluate a solution several times and estimate the true fitness from
the obtained values (usually by averaging).

 Akimoto, Astete Morales, Teytaud [AAT15]: Additive posterior noise can be
overcome with averaging over sufficiently many re-evaluations.

 Qian et al. [QBJT19]:

 More precise quantitative results for posterior noise.

 First results for prior noise, e.g., the (1+1) EA resampling each search point
ସ times can optimize LeadingOnes under 1-bit noise with rate

in expected time .

 D. and Sutton [DS19]): Use the median instead of the average!

 Example: To optimize LeadingOnes in the presence of constant noise rates
(below 1/2), averaging needs resamples. With the median,

suffice.

86

Benjamin Doerr: Introduction to theory (tutorial)

Other Results on Robustness To Noise

 Ant-colony optimizers and estimation-of-distribution algorithms are relatively
robust to noise: Sudholt and Thyssen [ST12], Doerr, Hota, Kötzing [DHK12b],
Friedrich, Kötzing, Krejca, Sutton [FKKS17], Lehre, Nguyen [LN19b], Zheng, D.
[ZD23a].

 Reason: The cautious up-date of the probabilistic model reduces the negative
impact of wrong decisions stemming from noise.

 Multi-objective EAs can be relatively robust to noise: Dinot, D., Hennebelle, Will
[DDHW23], Dang, Opris, Salehi, Sudholt [DOSS23a].

 Reason: The larger population together with the implicit diversity mechanism
reduces the negative impact of noise.

87

Benjamin Doerr: Introduction to theory (tutorial)

Summary Dynamic and Noisy Optimization

 Due to their randomized nature, EAs without any specific adjustments cope well
with moderate levels of noise and with moderate changes of the problem
instance.

 Larger population sizes help.

 ACO, EDAs are more robust.

 Resampling can give additional robustness (at the price of more function
evaluations per search point).

88

Benjamin Doerr: Introduction to theory (tutorial)

Hot Topic 4: Dynamic Parameter Choices

 Instead of fixing a parameter (mutation rate, population size, …) once
and forever (static parameter choice), it might be preferable to change
the parameter values during the run of the EA

 Hope:

 different parameter settings may be optimal at different stages of the
optimization process, so by changing the parameter value we can
improve the performance

 we can let the algorithm optimize the parameters itself (on-the-fly
parameter choice, self-adjusting parameters)

 Experimental work suggests that dynamic parameter choices often
outperform static ones (for surveys see [EHM99,KHE15])

89

Benjamin Doerr: Introduction to theory (tutorial)

Theory for Dynamic Parameter Choices:
Deterministic Schedules

 Deterministic variation schedule for the mutation rate (Jansen and
Wegener [JW00, JW06]):

 Toggle through the mutation rates
ଵ

ଶ

ସ

ଵ

ଶ

 Result: There is a function where this dynamic EA takes time
ଶ , but any static EA takes exponential time

 For most functions, the dynamic EA is slower by a factor of

 [unpublished] For jump functions with (not too small) jump size ,
this gives a significant improvement:

 faster than standard-bit mutation by a factor of ஐ

 slower than fast mutation by a factor of ஐ

 First example proving that dynamic parameter choices can be
beneficial.

90

Benjamin Doerr: Introduction to theory (tutorial)

Theory for Dynamic Parameter Choices:
Depending on the Fitness

 Fitness-dependent mutation rate [BDN10]: When optimizing the
LeadingOnes test function with the (1+1) EA

 the fixed mutation rate
ଵ

gives a runtime of ଶ

 the fixed mutation rate
ଵ.ହଽ

gives ଶ (optimal fixed mut. rate)

 the mutation rate
𝟏

𝑳𝑶 𝒙 ା𝟏
gives ଶ (optimal dynamic rate)

 Fitness-dependent offspring pop. size

 with the right fitness-dependent , the EA optimizes OneMax in
time [BLS14]

 with
𝒏

𝒏ି𝒇(𝒙)
, the GA optimizes OneMax in time

instead of roughly with best static [DDE15]

 Fitness-dependent parameters can pay off. It is hard to find the optimal
dependence, but many others give improvements as well.

91

Benjamin Doerr: Introduction to theory (tutorial)

Theory for Dynamic Parameter Choices:
Success-based Dynamics

 Success-based choice of island number: You can reduce of the parallel
runtime (but not the total work) of an island model when choosing the
number of islands dynamically (Lässig and Sudholt [LS11]):

 double the number of islands after each iteration without fitness gain

 half the number of islands after each improving iteration

 Success-based choice (1/5-th rule) of in the (1+(,)) GA finds the
optimal mutation strength [DD18] (a constant):

 ర after each iteration without fitness gain

 after each improving iteration

 Important that the fourth root is taken (1/5-th rule).
The doubling scheme of [LS11] would not work

 Simple mechanisms to automatically find the current-best parameter
setting (note: this is great even when the optimal parameter does not
change over time, but is hard to know beforehand)

92

Benjamin Doerr: Introduction to theory (tutorial)

A Run of the Self-Adjusting GA
on OneMax ()

93

∗

self-adjusting parameter value
optimal parameter value

Benjamin Doerr: Introduction to theory (tutorial)

Theory for Dynamic Parameter Choices:
Success-based Dynamics II – Stagnation

Detection

 Previous success-based dynamics:

 Work well when the characteristics of the landscape changes slowly
 good parameter values “follow” the changes of the landscape.

 Not much known for abrupt changes, e.g., jump functions.

 Very recent idea: “Stagnation detection” [RW21a, RW21b, RW22, DR23]

 When for too long (details omitted) no improvement happened, increase
the mutation strength (because there’ll be no improvement close by).

 Can be added to all mutation-based algorithms.

 Gives the best runtime for the (1+1) EA on jump functions.

 Very simple, very promising idea!

94

Benjamin Doerr: Introduction to theory (tutorial)

Theory for Dynamic Parameter Choices:
Self-Adaptation

 So far: An extra mechanism added onto the EA controls the parameters.

 Self-adaptation: Let the usual variation-selection cycle do this for you!

 Add the parameter to the individual (extended representation)

 Extended mutation: first mutate the parameter, then mutate the
individual taking into account the new parameter value

 Hope: Better parameter values lead to fitter individuals which are
preferred by the (non-extended) selection mechanisms of the EA

 First proof that this can work (artificial example) [DL16b]

 Self-adaptation can find the right mutation rate for the (1, EA on OneMax
(classic benchmark) [DWY21]

 Self-adaptation can find the right mutation rate for the (,) EA on
LeadingOnes (also with unknown-solution length) [CL20]

 Generic way to adapt parameters, but not well-understood
95

Benjamin Doerr: Introduction to theory (tutorial)

Summary Dynamic Parameter Choices

 State of the art: A growing number of results, some very promising

 personal opinion: this is the future of discrete EC, as it allows to
integrate very powerful natural principles like adaption and learning

 survey on theory: [DD20]

96

An extension of the classi-
fication of Eiben, Hinterding,
and Michalewicz (1999)

[DJ00,DJ06]

[BDN10,BLS14,DDE15]

[DL16b,CL20,DWY21]

[LS11,DDK16,DDY16,BD17,DD18,DDK18,DGWY19,EGL+19, RW20,
RW21a, DDL21, RW21b, FS21a,FS21b, FS22, RW22,DR23,

KLLZ23]

[hyper-heuristics: AL14, DLOW18, LOW20, LOW23,
DDLS23]

Benjamin Doerr: Introduction to theory (tutorial)

Hot Topic 5: Fine-grained Runtime Analysis

 Classic runtime analysis: Analyze the time until the optimum is found.

 Recently: Runtime notions that give more or more relevant information.

 Fixed budget perspective: Analyze the (expected) solution quality
obtainable in a given time budget [JZ12,DJWZ13,JZ14a,JZ14b,LS15,NNS17,DDY20,KW20]

 Interesting from the application perspective, but difficult to analyze!

 Fixed target analysis, starting with good solutions: Classic runtime notion
extended to arbitrary starting/ target solution qualities [BDDV20,ABD20a,DK21a].

 Classic proofs can be re-used, but different algorithms become good.

 Parameterized complexity: Analyze the runtime relative to a parameter of
the input instance [Sto06,Sto07,KLNO10,SN12,KN13,SNN14,FN15,CLNP16,Sut21]

 Hot topic in classic algorithms since 1999

97

Benjamin Doerr: Introduction to theory (tutorial)

Part VI:

Conclusion

98

Benjamin Doerr: Introduction to theory (tutorial)

Summary

 Theoretical research gives deep insights in the working principles of EC,
with results that are of a different nature than in experimental work

 “very true” (=proven), but often apply to idealized settings only

 for all instances and problem sizes, but sometimes less precise

 often only asymptotic results instead of absolute numbers

 proofs tell us why certain facts are true

 The different nature of theoretical and experimental results implies that
a real understanding is best obtained from a combination of both

 Theory-driven curiosity and the clarifying nature of mathematical proofs
can lead to new ideas, insights and algorithms

99

Benjamin Doerr: Introduction to theory (tutorial)

Summary (2):
How to Use Theory in Your Work?

 Try to read theory papers (or listen to theory talks), but don’t expect more
than from other papers

 Neither a theory nor an experimental paper can tell you the best
algorithm for your particular problem, but both can suggest ideas

 Try “theory-style thinking”: take a very very simplified version of your
problem and imagine what could work and why

 Don’t be shy to talk to the theory people!

 they will not have the ultimate solution and their mathematical
education makes them very cautious presenting an ultimate solution

 but they might be able to prevent you from a wrong path or suggest
alternatives to your current approach

100

Benjamin Doerr: Introduction to theory (tutorial)

Theory Books (Written for Theory People,
But Not Too Hard to Read)

 Neumann/Witt (2010). Bioinspired Computation in Combinatorial Optimization,
Springer

 Auger/Doerr (2011). Theory of Randomized Search Heuristics, World Scientific

 Jansen (2013). Analyzing Evolutionary Algorithms, Springer

 Doerr/Neumann (2020). Theory of Evolutionary Computation – Recent
Developments in Discrete Optimization, Springer. Free electronic version at
http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr_neumann_book.html

101

