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Benjamin Doerr: Introduction to theory (tutorial)

Instructor: Benjamin Doerr

 Benjamin Doerr is a full professor at the French École Polytechnique. 

 He received his diploma (1998), PhD (2000) and habilitation (2005) in 
mathematics from the university of Kiel (Germany). His research area is the 
theory of both problem-specific algorithms and randomized search heuristics like 
evolutionary algorithms. Major contributions to the latter include runtime analyses 
for existing evolutionary algorithms, the determination of optimal parameter 
values, and the theory-guided design of novel operators, on-the-fly parameter 
choices, and whole new evolutionary algorithms. 

 Together with Frank Neumann and Ingo Wegener, Benjamin Doerr founded the 
theory track at GECCO and served as its co-chair 2007-2009, 2014, and 2023-
2024. He is a member of the editorial boards of several journals, among them 
Artificial Intelligence, Evolutionary Computation, Natural Computing, and 
Transactions on Evolutionary Computation. Together with Frank Neumann, he 
edited the book Theory of Evolutionary Computation – Recent Developments in 
Discrete Optimization (Springer 2020).
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This Tutorial: A Real Introduction to Theory

 GECCO, CEC, PPSN always had a good number of theory tutorials.

 They did a great job in educating the theory community.

 However, not much was offered for those attendees which

 have little experience with theory,

 but want to understand what the theory people are doing (and why).

 This is the target audience of this tutorial. We try to answer those 
questions which come before the classic theory tutorials.
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Questions Answered in This Tutorial 

 What is theory in evolutionary computation (EC)?

 Why do theory? How does it help us understanding EC?

 How do I read and interpret a theory result?

 What type of results can I expect from theory?

 What are current “hot topics” in the theory of EC?
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Focus: EAs for Discrete Search Spaces

 In principle, all we say is valid for all subareas of theory.

 However, to not overload you with definitions and notation, we focus 
mostly on  classic evolutionary algorithms for discrete search spaces.

 Hence we intentionally omit examples from

 continuous optimization, e.g., CMA-ES, differential evolution, …

 genetic programming, ant colony optimizers, swarm intelligence, …

 exception: a discussion of the recent theory advances on 
estimation-of-distribution algorithms in part V.
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The Most Important Point Before We Start

 If I’m saying things you don’t understand or if you want to know more 
than what I had planned to discuss, 

don’t be shy to ask questions at any time!
 This is “your” tutorial and I want it to be as useful for you as possible.

 I’m trying to improve the tutorial each time I give it. For this, your 
feedback (positive and negative) is greatly appreciated!

  So talk to me after the tutorial, during the coffee breaks, social 
event, late-night beer drinking, … or send me an email.
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Outline of the Tutorial

 Part I: What is Theory of EC?

 Part II: A Guided Walk Through a Famous Theory Result

 an illustrative example to convey the main messages of this tutorial

 Part III: How Theory Has Contributed to a Better Understanding of EAs

 3 ways how theory has an impact

 Part IV: How Theory Can Help YOU

 Part V: Current Hot Topics in the Theory of EAs

 EDAs, dynamic&noisy optimization, dynamic/adaptive parameter 
choices, EMO (NSGA-II)

 Part VI: Concluding Remarks

 Appendix: glossary, references
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Part I:

What is 
Theory of EC

8

 Definition: theory of EC

 What can you achieve with theoretical research?

 Comparison: theory vs. experiments
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What Do We Mean With Theory?

 Definition (for this tutorial): 
By theory, we mean results proven with mathematical rigor.

 Mathematical rigor:

 make precise the evolutionary algorithm (EA) you regard

 make precise the problem you try to solve

 formulate a precise statement how this EA solves this problem

 prove this statement

 Example:
Theorem: The (1+1) EA generates the optimum of the OneMax function 
in an expected number of at most iterations. 
Proof: blah, blah, …
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Other Notions of Theory

 Theory: Mathematically proven results

 Experimentally guided theory: Set up an artificial experiment to 
experimentally analyze a particular question.

 Example: add a neutrality bit to two classic test functions, run a GA 
on these, and derive insight from the outcomes of the experiments.

 Descriptive theory: Use mathematical notation to describe, measure, or 
quantify observations.

 Example: fitness-distance correlation, schema theory, …

 “Theories”: Unproven claims that (mis-)guide our thinking.

 Example: building block hypothesis
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Other Notions of Theory

 Theory: Mathematically proven results

============<in this tutorial, we focus on the above>============

 Experimentally guided theory: Set up an artificial experiment to 
experimentally analyze a particular question.

 Example: add a neutrality bit to two classic test functions, run a GA 
on these, and derive insight from the outcomes of the experiments.

 Descriptive theory: Use mathematical notation to describe, measure, or 
quantify observations. 

 Example: fitness-distance correlation, schema theory, …

 “Theories”: Unproven claims that (mis-)guide our thinking.

 Example: building block hypothesis
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Why Do Theory? Because of the Results!

 Absolute guarantee that the result is correct (it is proven).

 You can be sure.

 Reviewers can check truly the correctness of results.

 Readers can trust reviewers or, with moderate maths skills, check the 
correctness themselves.

 Many results can only be obtained by theory; e.g., because you make a 
statement on a very large or even infinite set:

 all bit-strings of length , 

 all TSP instances on vertices, 

 all input sizes ,

 all possible algorithms for a problem.
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Why Do Theory? Because of the Approach!

 A proof (automatically) gives insight in

 how things work ( working principles of EC),

 why the result is as it is.

 Self-correcting/self-guiding effect of proving: 

 When proving a result, you are automatically pointed to the questions 
that need more thought.

 You see what exactly is the bottleneck for a result.

 Trigger for new ideas:

 clarifying nature of mathematics,

 playful nature of mathematicians.
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Limitations of Theoretical Research

 Restricted scope: So far, mostly simple algorithms could be analyzed for 
simple optimization problems.

 Less precise results: Constants are not tight, or not explicit as in 
“ ଶ ” = “less than ଶ for some unspecified constant ”.

 Less specific results: 

 You obtain a (weaker) guarantee for all problem instances,

 but not a stronger guarantee for those instances which show up in 
your application.

 Theory results can be very difficult to obtain: The proof might be short 
and easy to read, but finding it took long hours.

 Usually, there is no generic way to the solution, but you need a  
completely new, clever idea.
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Part II: 

A Guided Walk Through a 
Famous Theory Result
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We use a simple but famous theory result 

 as an example for a non-trivial result

 to show how to read a theory result

 to explain the meaning of such a theoretical statement

 to illustrate what we just discussed
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A Famous Result

Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear 
function 


ଵ   



ୀଵ

ଵ 

in an expected number of iterations.

Reference:
[DJW02]  S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) 
evolutionary algorithm. Theoretical Computer Science, 276:51–81, 2002.

– Famous paper (500+ citations, maybe the most-cited pure EA theory paper)

– Famous problem (20+ papers working on exactly this problem, many highly 
useful methods were developed in trying to solve this problem)
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Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear 
function


ଵ   



ୀଵ

ଵ 

in an expected number of iterations.

(1+1) evolutionary algorithm to maximize 𝒏 :
1. choose  uniformly at random
2. while not terminate do
3.     generate from by flipping each bit independently

with probability (“standard bit mutation”)
4.     if then 
5. output 

Reading This Result

17

at most for some 
unspecified constant 

a hidden all-quantifier: we claim 
the result for all ଵ 

performance measure: number of iterations or 
fitness evaluations, but not runtime in seconds

A mathematically 
proven result

should be made 
precise in the paper to 
avoid any ambiguity
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Why is This a Good Result?

 Gives a proven performance guarantee

 General: a statement for all linear functions in all dimensions 

 Non-trivial 

 Surprising 

 Provides insight in how EAs work 

18

 more on these 3 items 
on the next slides
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Non-Trivial: Hard to Prove & Hard to Explain 
Why it Should be True
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Non-Trivial: Hard to Prove & Hard to Explain 
Why it Should be True

 Hard to prove

 7 pages complicated maths proof in [DJW02].

 We can do better now, but only because we developed deep analysis 
techniques (drift analysis).

 No “easy” explanation

 monotonicity: flipping a 0 to a 1 always increases the fitness

 Are monotonic functions easy to optimize for a EAs (because you 
only need to collect 1s)?

 No! Exponential runtimes can occur [DJS+13, LS18].

 separability: a linear function can be written as a sum of functions 

such that the  depend on disjoint sets of bits

 Is the optimization time of such a sum small?

 No! The  can interact badly [DSW13].
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Surprising: Same Runtime For Very 
Different Fitness Landscapes

 Example 1: OneMax, the function counting the number of 1s in a string, 


ଵ  

ୀଵ : 

 unique global maximum at 

 perfect fitness distance correlation: if a search point has higher 
fitness, then it is closer to the global optimum.

 Example 2: BinaryValue (BinVal for short), the function mapping a bit-
string to the number it represents in binary


ଵ 

ି



ୀଵ : 

 unique global maximum at 

 very low fitness-distance correlation:  

 ିଵ, distance to optimum is ,

 ିଵ , distance to optimum is .
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Insight in Working Principles

 Insight from the result:

 Even if there is a low fitness-distance correlation (as is the case for 
the BinVal function), EAs can be very efficient optimizers.

 Insight from the proof: 

 The Hamming distance ∗ of to the optimum ∗ measures 
very well the quality of the search point :

 The expected number ௫ of iterations to find the optimum starting 
from satisfies

∗
௫

∗

independent of .
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A Glimpse on a Modern Proof

 Theorem [DJW12]: For all problem sizes and all linear functions 

with ଵ ଵ   the (1+1) EA finds the optimum ∗ of in an 
expected number of at most iterations.

 1st proof idea: Without loss, we can assume that ଵ ଶ  .

 2nd proof idea: Regard an artificial fitness measure!

 Define 
ିଵ

 

ୀଵ “artificial weights” from down to 

ଵ



 Key lemma: Consider the (1+1) EA optimizing the original . Assume that 
some iteration starts with the search point and ends with the random 
search point . Then

∗ ᇱ ∗

 expected artificial fitness distance reduces by a factor of 
ଵ

ସ

 3rd proof idea: Multiplicative drift theorem translates this expected progress w.r.t. 
the artificial fitness into a runtime bound.

 Roughly: the expected runtime is at most the number of iterations needed to 
get the expected artificial fitness distance below one.

23

DJW02: Droste, Jansen, Wegener
DJW12: Doerr, Johannsen, Winzen
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Multiplicative Drift Theorem

 Theorem [DJW12]: Let  ଵ ଶ be a sequence of random variables taking 
values in the set . Let . Assume that for all , we have

௧ାଵ ௧

Let ௧ . Then 



 On the previous slide, this theorem was used with 

 ,

 ௧
∗ (௧) ,

 and the estimate  .

 Bibliographical notes: Artificial fitness functions very similar to this were already used in 
Droste, Jansen, and Wegener [DJW02] (conference version [DJW98b]). Drift analysis 
(“translating progress into runtime”) was introduced to the field by He and Yao [HY01] to 
give a simpler proof of the [DJW02] result. A different approach was given by Jägersküpper
[Jäg08]. The multiplicative drift theorem by D., Johannsen, and Winzen [DJW12] 
(conference version [DJW10]) proves the [DJW02] result in one page and is one of the 
most-used tools today.

24
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into

expected (run-)time
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Limitations of the Linear Functions Result

 An unrealistically simple EA: the (1+1) EA.

 Linear functions are “trivial” artificial test function.

 Not a precise result, but 

 only in [DJW02] 

 or a most likely significantly too large constant in the [DJW12] result.

 Two types of replies (details on the following slides):

 Despite these limitations, we gain insight.

 The 2002-results was the start, now we know much more.
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Limitation 1: Only the Simple (1+1) EA

 Insight: Using nothing else than standard bit mutation is enough to 
optimize problems with low fitness-distance correlation.

 Newer Result: The (1+ ) EA optimizes any linear function in expected 
time (= number of fitness evaluations)

This bound is sharp for BinVal, but not for OneMax, where the expected 
optimization time is 

୪୭ ୪୭ ఒ

୪୭

 Not all linear functions have the same optimization time [DK15]! 

 We are optimistic that we will make progress towards more complicated 
EAs. Known open problems include, e.g., how crossover-based 
algorithms and ant colony optimizers optimize linear functions.
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Limitation 2: Only Linear Functions

 Insight: Linear functions are easy, monotonic functions can be difficult
 some understanding which problems are easy and hard for EAs.

 Newer runtime analyses for the (1+1) EA (and some other algorithms): 

 Eulerian cycles [Neu04, DHN07, DKS07, DJ07],

 shortest paths [STW04, DHK07, BBD+09],

 minimum spanning trees [NW07, DJ10, Wit14],

 knapsack [WPN16, NS18, NS19, XNNS21 and many more],

 and many other poly-time optimization problems.

 We also have some results on approximate solutions for NP-complete 
problems like partition [Wit05], vertex cover [FHH+09, OHY09], maximum 
cliques [Sto06], graph coloring [SZ10, BS19].

 We have some results on dynamic and noisy optimization ( part V).
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Limitation 3: Only Asymptotic Results

 Insight: Linear functions are easy for the (1+1) EA. 

 For this insight, a rough result like is enough.

 Newer result [Wit13]: The exp. runtime of the (1+1) EA on any linear 
function is , that is, at most for some constant .

 Asymptotic result, but the asymptotics are only in a lower order term.

 [Wit13] also has a non-asymptotic result, but it is harder to digest:
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Summary “Guided Tour”

 We have seen one of the most influential theory results: 
The (1+1) EA optimizes any linear function in iterations.

 We have seen how to read and understand such a result.

 We have seen why this result is important:

 non-trivial and surprising,

 gives insights in how EAs work, and

 spurred the development of many important tools (e.g., drift analysis).

 We have discussed the limitations of this theory result.
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Part III: 

How Theory Can Help 
Understanding and 

Designing EAs

30

1. Debunk misconceptions

2. Help choosing the right parameters, representations, operators, and 
algorithms

3. Invent new representations, operators, and algorithms
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Contribution 1: Debunk Misconceptions

 When working with EAs, it is easy to conjecture some general rule from 
observations, but without theory it is hard to distinguish between “we 
often observe” and “it is true that”.

 Reason: It is often hard to falsify a conjecture experimentally.

 The conjecture might be true “often enough”, but not in general.

 Danger: Misconceptions prevail in the EA community and misguide the 
future development of EAs.

 2 (light) examples on the following slides
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Misconception 1: Functions Without Local 
Optima are Easy to Optimize

 A function  has no local optima if each non-optimal search point has 
a neighbor with better fitness.                                            “unimodal function”

  If ( ) is not optimal, then by flipping a single bit of you can reach a 
better solution.

 Misconception: Such functions are easy to optimize…

 “because all you need is flipping single bits”.

 Truth: There are unimodal functions  such that all reasonable EAs 
with high probability need super-polynomial time to find a reasonable solution
[HGD94,Rud96,DJW98a].

 Reason: yes, it is easy to find a better neighbor if you’re not optimal yet, but you 
may need to do this an exponential number of times because all improving paths 
to the optimum are that long
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Misconception 2: Monotonic Functions are 
Easy to Optimize for EAs

 A function  is monotonically strictly increasing (monotonic) if the 
fitness increases whenever you flip a 0-bit into 1.

 strong version of “no local optima”: each neighbor with additional ones is better

 Misconception: Such functions are easy to optimize for standard EAs…

 because already simple hill-climbers flipping single bits (e.g., randomized local 
search) do the job in time . 

 Truth: There are (many) monotonic functions such that with high probability the 
(1+1) EA with mutation probability needs exponential time to find the optimum 
[DJS+13].

 The can be lowered to [LS18].

 Same result for many mutation-based algorithms [Len20].

 For any there is a and a monotonic such that the ( +1) EA with 
mutation rate needs super-polynomial time to optimize [LZ21].
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Summary Misconceptions

 Intuitive reasoning or experimental observations can lead to wrong beliefs.

 It is hard to falsify them experimentally, because

 counter-examples may be rare (so random search does not find them),

 counter-examples may have an unexpected structure.

 There is nothing wrong with keeping these beliefs as “rules of thumb”, but 
it is important to know what is a rule of thumb and what is really the truth.

 Theory is the right tool for this!
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Contribution 2: Help With Design Choices

 When designing an EA, you have to choose between a huge number of 
design alternatives: the basic algorithm, the operators and 
representations, the parameters, …. 

 Theory can guide you with deep and reliable analyses of scenarios similar 
to yours.

 The question “what is a similar scenario” remains, but you have the 
same problem when looking for advice from experimental research.

 Examples:

 use of fitness-proportionate selection

 representations in graph problems
 use of crossover: [JW02,SW04,FW04,FW05,JW05,Sud05,WJ07,RWP08,DT09,NT10,LY11,KST11, 

DJK+11,DHK12a,DJK+13,DFK+16,Sud17,DFK+18,CO18,CO20,OSW20,Sut21,FKR+22,LM24,
DEJK24]

 parameters:  [Müh92,Bäc93,GKS99,JW00,Prü04,JJW05,Wit06,JS07,BDN10,Leh10,Leh11,LY12, 
Sud13,Wit13,RS14,DK15,GW17,DLMN17,ADFH18,ADY19,AD20,BBD21a,AD21,Doe21]

35

 more on these 2       
on the next slides
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Design Choices: 
Fitness-Proportionate Selection

 Theorem [OW15]: When the Simple GA (Goldberg [Gol89]) with a 
population size .ଶସଽଽ or less optimizes the OneMax test function 


ଵ , then in any polynomial number of iterations 

it does not find an individual that is 1% better than a random individual.

 Interpretation: If fitness-proportionate has difficulties already on OneMax, 
use it with caution! Similar results [HJKN08, NOW09]
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Design Choices: Representations

 Several theoretical works on shortest path problems [STW04, DHK07, 
BBD+09]. All use a vertex-based representation: 

 each vertex points to its predecessor in the path

 mutation: rewire a random vertex to a random neighbor

 [DJ10]: How about an edge-based representation?

 individuals are set of edges (forming reasonable paths)

 mutation: add a random edge (and delete the one made obsolete)

 Result: All previous algorithms become faster by a factor of 
 మ

|ா|

 [JOZ13]: edge-based representation also preferable for vertex cover

 Interpretation: While there is no guarantee for success, it may be useful 
to think of an edge-based representation for graph-algorithmic problems

37
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Summary Design Choices

 By rigorously analyzing simplified situations, theory can suggest 

 which algorithm to use,

 which representation to use,

 which operators to use,

 how to choose parameters.

 As with all particular research results, the question remains how 
representative such a result is for the general usage of EAs.
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Contribution 3: Invent New Operators
and Algorithms

 Theory can also, both via the deep understanding gained from proofs
and by “theory-driven curiosity” invent new operators and algorithms. 

 Example: What is the right way to do mutation [DLMN17]?

 Outline (of the next 10+ slides):

 What is “known” about mutation

 A thorough analysis how simple EAs optimize the jump benchmark

 Some unexpected conclusions [best-paper award in the GECCO 
2017 Genetic Algorithms track]

 2nd example [not shown]: Design of the GA based on black-
box complexity insight  [DDE13, GP14, DDE15, DD15a, DD15b, Doe16, BD17, 
DD18, KAD19, ADK19, BB19, ABD20, AD20, BB20, FS22, ABD22, ADK22, ABD24]
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General Belief on Mutation

 Note: We only deal with bit-string representations, that is, the search 
space is  for some .

 [Similar results hold for other discrete search spaces, e.g., 
permutations [DGI24]]

 General belief: The right way of doing mutation is standard bit mutation, 
that is, flipping each bit independently with some probability (“mut. rate”).

 Global operator: from any parent you can generate any offspring 
(possibly with very small probability). 
 Algorithms cannot get stuck forever in a local optimum.

 General recommendation: Use a small mutation rate like .
See,  e.g., [Bäc96, BFM97, Och02].

40



Benjamin Doerr: Introduction to theory (tutorial)

Informal Justifications for 

 Imitate local search / hill-climbing: A mutation rate of maximizes the 
probability to flip a single bit.

 Reducing the rate by a factor of reduces this prob. by a factor of .

 Increasing the rate by a factor of reduces this prob. by a factor of ().

 Mutation is destructive: If your current search point has a Hamming 
distance ∗ of less than from the optimum ∗, then the offspring 
has (in expectation) a larger Hamming distance and this increase is 
proportional to :

 ∗ ∗ ∗

41
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both and 
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Proven Results Supporting 

 Optimal mutation rates for (1+1) EA:


ଵ


for OneMax [Müh92; Bäc93, GKS99]


ଵ.ହଽ


for LeadingOnes [BDN10]


ଵ


for all linear functions [Wit13]

 monotonic functions [Jan07, DJSWZ13, LS18, LMS19]: 





, gives a expected runtime on all monotonic 

functions with unique optimum, 





for some gives ଶ , 


ଶ.ଵଷ…


gives an exponential runtime on some monotonic functions.

 When , then the optimal mutation rate for the EA optimizing 

OneMax is 
ଵ


[GW17].

42

Theory supports 
using standard bit 
mutation with 
mutation rate 
around 
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Really?

 Can we really say that is good (at least “usually”)?

 More provocative: Can we really say that standard bit mutation is the 
right way of doing mutation?

 Note: All results regard easy unimodal optimization problems.

 OneMax, LeadingOnes, linear functions, monotonic functions.

  Flipping single bits is a very good way of making progress

 Let’s look at an example with local optima…
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Question: What is the Best Mutation Rate for the 
(1+1) EA on the Jump Functions Benchmark?

 ,: fitness of an -bit string is the number ଵ of ones, except if 

ଵ , then ଵ [DJW02]

 Novelty (for a theoretical analysis of the mutation rate): There are non-
trivial local optima: all  with ଵ .

44
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Runtime Analysis

 Let   denote the expected optimization time of the (1+1) EA 
optimizing , with mutation rate . 

 Theorem: For all and ,

𝒎 𝒏ି𝒎  𝒎 𝒏ି𝒎 ିଵ

 Let ௧ ௧  .

 Theorem: If , then ௧  ⁄






ଵ ⁄

and is essentially the only optimal mutation rate.

  The right mutation rate is much higher than the usual and it 
gives a huge speed-up!
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Missing the Optimal Mutation Rate

 Theorem: If or , then 



ଶ

௧

 In simple words: is essentially the optimal mutation rate, but a small 
deviation increases the runtime massively. 

  Dilemma: To find the right mutation rate, you need to know “the ”, that 
is, how many bits you need to flip to leave the local optimum .

 Math. reason for the dilemma: When flipping bits independently at random 
(standard bit mutation), the Hamming distance of parent and 
offspring is strongly concentrated around the mean. 

  Exponential tails of the binomial distribution

  Maybe standard bit mutation is not the right thing to do?
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From This Analysis to a 
New Mutation Operator

 Recap: What do we need?

 No strong concentration of 

 Larger numbers of bits flip with reasonable probability

 1-bit flips occur with constant probability ( easy hill-climbing)

 Solution: Heavy-tailed mutation (with parameter , say ). 

 choose randomly with ିఉ [power-law].

 perform standard bit mutation with mutation rate .

 Some maths: 

 The probability to flip bits is ିఉ .  No exponential tails 

 , e.g., 32% for ( 37% for classic mut.)

47

Note: Random mut-rates have been used 
before in theory, but not heavy-tailed and 

only for special purposes (unknown solution 
length [DDK17], higher arities [DDK18])
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Heavy-tailed Mutation: Results

 Theorem: The (1+1) EA with heavy-tailed mutation ( ) has an 
expected optimization time on , of

ఉି.ହ
௧

 This one algorithm for all is only an 𝜷ି𝟎.𝟓 factor slower than 
the EA using the optimal mutation rate (depending on )!

 “One size fits all” (apart from a small polynomial factor).

 Compared to the classic EA, this is a speed-up by a factor of ().

 Lower bound (not important, but beautiful (also the proof)): The loss of slightly more than 
.ହ – by taking – is unavoidable:

 For sufficiently large, any distribution  on the mutation rates in has an 
such that  ௧ .
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Experiments (m=8, n=20..150)

49

Runtime of the (1+1) EA on ଼, (average over 1000 runs). To allow this number of 
experiments, the runs where stopped once the local optimum was reached and the remaining 
runtime was sampled directly from the geometric distribution describing this waiting time.
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Beyond Jump Functions

 Example (maximum matching): Let be an undirected graph having 
edges. A matching is a set of non-intersecting edges. Let be the size 

of a maximum matching. Let be constant and 
ଶ

ଶାଵ
. 

 The classic (1+1) EA finds a matching of size 
ை்

ଵାఌ
in an expected 

number of at most ,ఌ iterations, where ,ఌ is some number in 
ଶାଶ . [GW03]

 The (1+1) EA with heavy-tailed mutation does the same in expected 

time of at most 
𝒆

𝒎

𝒎
𝜷ି𝟎.𝟓 

𝒏,𝜺. 

 2nd example: Vertex cover in bipartite graphs (details omitted).

50

Riemann zeta function:
for 
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Performance in Classic Results

 Since the heavy-tailed mutation operator flips any constant number of 
bits with constant probability, many classic results for the standard (1+1) 
EA remain valid (apart from constant factor changes):

 runtime on OneMax

 ଶ runtime on LeadingOnes

 ଶ
୫ୟ୶ runtime on MinimumSpanningTree [NW07]

 and many others…

 The largest expected runtime that can occur on an  is …

  for the classic (1+1) EA: Trap function [DJW02], minimum 
makespan scheduling [Wit05]

 ఉ  for the heavy-tailed (1+1) EA
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Working Principle of Heavy-Tailed Mutation

 Reduce the probability of a 1-bit flip slightly (say from 37% to 32%)

 Distribute this free probability mass in a power-law fashion on all other -
bit flips 

 increases the prob. for a -bit flip from roughly 
ଵ

⋅!
to roughly ିఉ

 reduces the waiting time for a -bit flip from to ఉ

 This redistribution of probability mass is a good deal, because we usually 
spend much more time on finding a good multi-bit flip

 ,: spend time on all 1-bit flips, but time to find 

the one necessary -bit flip

 These elementary observations are a good reason to believe that heavy-
tailed mutation is advantageous for a wide range of multi-modal problems.

 Other theory works: [FQW18, FGQW18, WQT18, ABD20a, ABD20b, DZ21, QGWF21, 
BBD23, DQ23a, ZD24, ABD24]
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Heavy-Tailed  “Fast”

 Heavy-tailed mutation has been experimented with in continuous 
optimization (with mixed results as far as I understand):

 Simulated annealing [Szu, Hartley ‘87]

 Evolutionary programming [Yao, Lui, Lin ‘99]

 Evolution strategies [Yao, Lui ’97; Hansen, Gemperle, Auger, 
Koumoutsakos ’06; Schaul, Glasmachers, Schmidthuber ‘11]

 Estimation of distribution algorithms [Posik ’09, ‘10]

 Algorithms using heavy-tailed mutation were called fast by their 
inventors, e.g., fast simulated annealing.

  We propose to call our mutation fast mutation and the resulting 
EAs fast, e.g., ఉ.
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Summary: Fast Mutation on 
– A Theory-Guided Invention

 By rigorously analyzing the performance of a simple mutation-based EA on the non-
unimodal JUMP fitness landscape, we observe that

 higher mutation rates are useful to leave local optima

 standard bit mutation with a fixed rate is sub-optimal on most problems

 Solution: Use standard bit mutation, but with a random mutation rate sampled from 
a power-law distribution

 () factor speed-up for , and many other problems

 Does this work in practice? First results are promising 

 Neumann, Xie, Neumann [NXN22]: Knapsack with stochastic profits

 D, Krejca, Vu [DKV24] (GECCO’24: BP nominee ECOM): Target set selection
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Summary Part 3

Theory has contributed to the understanding and use of EAs by

 debunking misbeliefs (drawing a clear line between rules of thumb and 
proven fact)

 e.g., “no local optima” and “monotonic” do not mean “easy”

 giving hints how to choose parameters, representations, operators, and 
algorithms

 e.g., if fitness-proportionate selection with comma selection cannot 
even optimize OneMax, maybe it is not a good combination

 inventing new representations, operators, and algorithms: this is fueled 
by the deep understanding gained in theoretical analyses and “theory-
driven curiosity”

 e.g., if leaving local optima generally needs more bits to be flipped, 
then we need a mutation operator that does so sufficiently often 
 heavy-tailed mutation
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Part IV: 

How Theory Can Help YOU: 
Theory-Style Thinking
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How Theory Can Help YOU

 Message of this talk so far: Theory people can produce mathematical 
analyses and from these gain insights that are useful also outside theory.

 Two ways how you can profit from theory:

 Try to read some theory works and (at least) understand their meaning 
for the general use of EAs
 could be difficult

 Try to imitate the theory approach (without proving everything)
 could be easy 

 Next few slides: How you could have invented the heavy-tailed 
mutation operator with theory-style thinking
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An Example of Theory-Style Thinking

 Problem: You run your favorite evolutionary algorithm on your favorite 
problem and you feel that it takes too long to leave local optima.

 You try without success all your tricks:

 parameter tuning

 landscape analysis

 asking colleagues that are true experts in experimental work

 etc.

 but nothing really solves the problem.

 You’re so desperate that you try theory-style thinking…
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1st Step: Take a Really Simple Example 
Situation

 Really simple example situation (that hopefully still is representative for 
your problem of leaving local optima):

 You take a very simple optimization problem in which every reasonable 
heuristic gets stuck in a local optimum  jump function

 You take the most simple evolutionary algorithm you know 
 the (1+1) EA with mutation rate 

 Clever: You only look at the problem of leaving the local optimum (and 
not at the whole runtime)

 Note: If you later see that this is too simple and not helpful, you can still 
make it more complex later. But don’t be shy to start off really simple!
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2nd Step: Analyze Your Example Precisely 
and in Full Generality

 Simple example situation: The 
(1+1) EA optimizes a jump function
and is already in the local optimum.

 Question: How long does it take to leave the local optimum?

 What is the probability to generate an offspring better than the local opt.?

 Local optimum: any bit-string with ones and zeroes

 To leave this, you have to flip the missing bits and not flip the other bits

 Probability for this  ି

60

ଵ
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Full generality: 
A formula for all 



Benjamin Doerr: Introduction to theory (tutorial)

3rd Step: Generate Useful Data

 We plot the function 𝒎 𝒏ି𝒎 for 
interesting values of :

 a moderate problems size , a small jump size ;

 for the mutation rate , we recall that the standard choice is . So 
let’s use the scaling and take :

ସ ସ

 [type “y = (x/50)^4*(1-x/50)^46” into Google]
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3rd Step: Generate Useful Data

 We plot the function 𝒎 𝒏ି𝒎

 a moderate problems size , a small jump size ;

 for the mutation rate , we recall that the standard choice is . So 
let’s use the scaling and take :

ସ ସ

 [type “y = (x/50)^4*(1-x/50)^46” into Google]
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Inverse Plot: Loss From Taking Rate 
Instead of the Optimal Rate 
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Less than 20% of 
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performance for 
and 
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4th Step: Interpret the Data and 
Find a Solution

 The plots clearly show:

 The classic mutation rate of is highly suboptimal:

 e.g., a factor-500 performance loss for 

 There is no “right” mutation rate: Each rate is good for values of 
that are close to only

 e.g., is perfect for , but gives only 20% of the optimal 
performance for and 

 Solution attempt: “average” over different mutation rates!

 e.g., take rate and each with probability 50%
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 Averaging gives significant speed-ups for 

 Next steps (omitted here): Optimize this averaging strategy
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Summary: Theory-Style Thinking

 Step 1: Choose a really, really simple example situation.

 Step 2: Analyze this example precisely and in full generality. 
 Mathematical formula

 Step 3: Use the formula to cheaply generate very trustworthy data 
for any parameter values you want.

 Step 4: Interpret the data, find a solution.
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Part V: 

Current Topics of Interest
in the Theory of EC

69

 Populations

 Estimation-of-distribution algorithms (EDAs)

 Dynamic and noisy optimization

 Dynamic/adaptive parameter choices

 Fine-grained runtime analysis: fixed budget/target, parameterized complexity

 No slides:

 Co-evolution: Per Kristian Lehre is the expert

 Evolutionary Multi-objective Optimization (EMO): see the Gecco EMO tutorial 
by Joshua Knowles and Weijie Zheng
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 While most EAs in practice use non-trivial populations, EA theory has not 
been very successful in understanding why this is good (but some 
interesting results exist).

 Elitist mutation-based algorithms: 

 Larger offspring population size [JJW05, DK15, GW17, GW18]:

 Allow parallel implementations (faster).

 Usually no speed-up w.r.t. the total number of fitness evaluations.

 Research question: Up to which pop. size you have a linear 
speed-up, that is, the total runtime does not increase?

 Larger parent population size: Rather slows down things, but by 
surprisingly little [Wit06, ADFH18, AD20].

 Both can provably give robustness against noise and dynamic 
changes of the problem [JS05, GK16, LW16, DJL17, LM24, ADI24].

Hot Topic 1: Populations
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 Non-elitist mutation-based algorithms: Need sufficiently large populations
[JS07, NOW09, Leh10, Leh11, RS14, DL16a, CDEL18, DK19, Doe20]

 Small offspring pop: you lose good solutions too quickly and cannot 
really optimize (exponential runtimes).

 Large offspring pop: you usually generate a copy of a good parent and 
thus imitate an elitist algorithm.

 Inside the phase transition: strange things happen [ADY19].

 Problem: Not too much argument for non-elitism in theory so far! 
Example: for no choice of the population sizes, the EA shows an 
interesting speed-up over the EA on jump functions [Doe22]

 Large parent population plus diversity mechanism: The diversity mechanism 
can force the population to spread out, this can aid leaving local optima 
[FHN07, Sto08, FHN09, DFK+16, DFK+18, CS18, OSZ19].

Populations (2)
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 Crossover-based algorithms obviously need populations. The real 
problem is getting crossover to be useful.

 Summary: 

 Populations can ensure robustness and parallel speed-ups

 They are needed for non-elitist algorithms, but not many useful 
applications of non-elitism could be analyzed theoretically

 They are needed for cross-over based algorithms, but again our 
understanding of the usefulness of crossover remains low.

  Much work do be done!

Populations (3)
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Hot Topic 2: Estimation-of-distribution 
Algorithms (EDA)

 Example: compact Genetic Algorithm (cGA) of Harik, Lobo, and Goldberg 
[HLG99] with hypothetical pop. size to maximize 

 initialize 

 while not terminate

 sample  such that   indep. for all 

 sample  such that   indep. for all 

 if then 

 for all do    

 Instead of storing concrete search points, EDAs develop a probabilistic 
model (represented by the frequency vector in the cGA).

 much richer representation of knowledge
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What Can EDAs Do That EAs Can’t?

 Robustness to noise:

 The cGA can cope well with normally distributed additive posterior 
noise [FKKS17]

 The UMDA can cope well with 1-bit prior noise [LN19b]

 (similar result for ACO found earlier [DHK12b, FK13, ST12])

 Leaving local optima: EDAs can optimize multimodal functions faster 
than many classic EAs [HS18, DK20c, Doe21, WZD21, BBD21b, 
Wit23]

 different finding: on CLIFF, the cGA is (most likely) slower than the 
best EAs [NSW22] (but still faster than many standard EAs)

 Model building = representing many good solutions at once:

 MIMIC can build a probabilistic model that allows to sample a huge 
number of distant good solutions (experimental) [DK20a]
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Difficulty: Genetic Drift

 When a bit has no influence on whether or is better (because other 
bits have a higher impact), then the frequency  performs a random walk:

 
௪

 with probability  

 
௪

 with probability  

 
௪

 otherwise

 Such random movements can bring the frequency to a random boundary 
value  convergence to a sub-optimal solution.

 Insufficient solution: Artificially cap the frequencies into 

 Problems: If frequencies are mostly at the artificial boundaries, then… 

 our probabilistic model is not richer than that of the (1+1) EA

 the performance can drop [Witt17+LSW21, LN19a+DK20c, 
DZ20a,DL15+DK21b]
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Quantifying Genetic Drift

 Good news: From many previous works specifically targeting genetic drift 
[Sha02, Sha05, Sha06, FKK16] and many runtime analyses coping with 
genetic drift  [Dro06, DLN19, LN17, LN18, HS18, SW19, Wit19, KW20, 
Doe21, LSW21], we now understand genetic drift well. 

 Theorem (stated for the cGA only): Assume that the cGA optimizes a 
function with a neutral bit.

 The first time the frequency of this bit is at the boundary, is ଶ .

 The first time this frequencies leaves is ଶ .

 The probability that this frequency leaves the interval 
in the first iterations, is at most 

ଶ ଶ

 Advice to the practitioner: If you want to use a cGA for iterations, set 
the parameter somewhat larger than .
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Overcoming Genetic Drift

Automated ways to set the parameters right:

 Parallel runs with diverse parameter values [Doe21]

 Smart restarts: Restart with a larger when the theorem on the previous 
slide says that genetic drift could have occurred [DZ20a,ZD23a] 

EDA variants trying to avoid genetic drift outright:

 stable-cGA [FKK16]: cGA with an artificially modified frequency update.

 runtime on LeadingOnes

 exponential runtime on OneMax [DK20b].

 sig-cGA [DK20b, WZD21]: regards a longer history and changes 
frequencies only when there is sufficient evidence for it

 runtime on OneMax, LeadingOnes, and 
DeceivingLeadingBlocks
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Summary: EDA Theory

 Significant progress in the last 8 years:

 many runtime analyses, many strong methods

 understanding genetic drift.

 Cool particular results:

 EDAs work well in the presence of noise

 EDAs can leave local optima quicker than most EAs

 Many open problems:

 Tight runtime bounds for classic problems (OneMax)

 Theory for multi-variate EDAs (no result yet)
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Hot Topic 3: 
Dynamic and Noisy Optimization

 Dynamic optimization: The problem to be solved changes over time

 Noisy optimization: Access to the problem data stochastically disturbed

 General belief: Due to their randomized and problem-unspecific nature, 
EAs can cope well with such (stochastic) disturbances
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Dynamic OneMax

 First theory result (Droste [Dro02]): 

 OneMax function with optimum : ௭  

 Dynamic OneMax with 1-bit dynamics: in each iteration, with some small 
probability , the current instance ௭ is replaced by ௬, where is a 
random neighbor of (=a random bit of is flipped).

 Result: If 
୪୬ 


, then the (1+1) EA finds the optimum of this dynamic 

OneMax problem in ାଵା ଵ iterations (in expectation).

 Bit-wise dynamics: is obtained from by flipping each bit independently with 

probability ᇱ ୪୬ 

మ (expected distance same as above).

 Droste [Dro03]: Runtime on OneMax is ସାଵ ଵ . 

 Kötzing, Lissovoi, Witt [KLW15]: Improved to ଵ.ାଶ . 

 Dang-Nhu et al. [DNDD+18]: Improved to ଵ.ଷଽା .
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Interpretation of These Results

 EAs are surprisingly robust to dynamically changing problem instances!

 Example: 1-bit dynamics with 
୪୬ 


. 

 In average, every 


 ୪୬ 
iterations the optimum moves to a neighbor.

  We lose a fitness level (almost always).

 If the fitness distance is , then we need a roughly 


ௗ
iterations to improve the 

fitness (without dynamic changes).

 When close to the optimum ( constant),

 it takes expected time to gain one fitness level without dynamics,

 but we lose expected fitness levels because of the dynamic.

 Despite this, the EA finds the optimum in polynomial time.
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Why?

 From the proofs in Dang-Nhu et al. [DNDD+18] it seems that EAs make progress 
by repeatedly 

 hoping for a phase of few dynamic changes

 and then making exceptionally fast progress.
 Supports the general belief that the randomized nature of EAs is the 
reason for their robustness
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A plot of a typical run (fitness 
distance over time) for 

and 1-bit dynamic with 
୪୬ 


.

Warning: If the fitness-
distance correlation is 

weak, EAs find it harder 
to reoptimize [DDN19].
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Noisy Optimization

 Much more research on noisy optimization (started again by Droste [Dro04]). 

 Typical setting: Noisy access to the fitness function, that is, some fitness 
evaluations return a wrong value.

 Prior noise models: Instead of , the EA learns ᇱ for some 
stochastically disturbed version of . 

 1-bit noise: With probability , you learn the fitness of a random neighbor 
of .

 Bit-wise noise: Obtain ᇱ from by flipping each bit independently with 
probability and return ᇱ .

 Posterior noise: Return a disturbed version of , e.g. where 
follows a normal distribution.
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Noisy Optimization: Results for the (1+1) EA

 OneMax (Droste [Dro04], Gießen, Kötzing [GK16], Dang-Nhu et al. [DNDD+18]):

 when 
ఉ ୪୬ ୪୬


(1-bit noise), 

ఊ ୪୬ ୪

మ (bit-wise noise)

 polynomial time when 
୪୭


, 

୪୭ 

మ

 super-polynomial time for stronger noise.

 LeadingOnes ([GK16], Qian, Bian, Jiang, Tang [QBJT19], Sudholt [Sud21]): 

 ଶ when ିଶ , ିଷ

 polynomial when 
୪୭ 

మ , 
୪୭ 

య

 super-polynomial for stronger noise.

 Bottom line: 1-bit and bit-wise noise behave similar when .

 EA is somewhat robust, but not very robust; worse for LeadingOnes.
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Larger Populations: Additional Robustness 

 ( + ) EA on OneMax [GK16]: 1-bit noise with strength , 
୪୭ ଵହ



 noise-less runtime of fitness evaluations.

 (1+ ) EA on OneMax:

 [GK16]: 1-bit noise with strength , 
 ୪୭ 



 runtime ଶ ିଵ fitness evaluations.

 Antipov, D., Ivanova [ADI24]  For bit-wise noise with any rate ିଵ , a 
population size of suffices to obtain the noise-less runtime of 

୪୭ ୪୭

୪୭
f-evals.

 (1+ ) EA on LeadingOnes [GK16,Sud21]: 1-bit noise with strength or bit-wise 
noise with strength . For resp. ଶ , , and 

, we have the noise-less runtime of ଶ .

  Already moderate population sizes massively increase the robustness to noise!
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Additional Robustness from Resampling

 Resampling: Evaluate a solution several times and estimate the true fitness from 
the obtained values (usually by averaging).

 Akimoto, Astete Morales, Teytaud [AAT15]: Additive posterior noise can be 
overcome with averaging over sufficiently many re-evaluations.

 Qian et al. [QBJT19]: 

 More precise quantitative results for posterior noise.

 First results for prior noise, e.g., the (1+1) EA resampling each search point 
ସ times can optimize LeadingOnes under 1-bit noise with rate 

in expected time  .

 D. and Sutton [DS19]): Use the median instead of the average!

 Example: To optimize LeadingOnes in the presence of constant noise rates 
(below 1/2), averaging needs resamples. With the median, 

suffice.
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Other Results on Robustness To Noise

 Ant-colony optimizers and estimation-of-distribution algorithms are relatively 
robust to noise: Sudholt and Thyssen [ST12], Doerr, Hota, Kötzing [DHK12b], 
Friedrich, Kötzing, Krejca, Sutton [FKKS17], Lehre, Nguyen [LN19b], Zheng, D. 
[ZD23a].

 Reason: The cautious up-date of the probabilistic model reduces the negative 
impact of wrong decisions stemming from noise.

 Multi-objective EAs can be relatively robust to noise: Dinot, D., Hennebelle, Will 
[DDHW23], Dang, Opris, Salehi, Sudholt [DOSS23a].

 Reason: The larger population together with the implicit diversity mechanism 
reduces the negative impact of noise.
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Summary Dynamic and Noisy Optimization

 Due to their randomized nature, EAs without any specific adjustments cope well 
with moderate levels of noise and with moderate changes of the problem 
instance.

 Larger population sizes help.

 ACO, EDAs are more robust.

 Resampling can give additional robustness (at the price of more function 
evaluations per search point).
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Hot Topic 4: Dynamic Parameter Choices

 Instead of fixing a parameter (mutation rate, population size, …) once 
and forever (static parameter choice), it might be preferable to change 
the parameter values during the run of the EA

 Hope:

 different parameter settings may be optimal at different stages of the 
optimization process, so by changing the parameter value we can 
improve the performance

 we can let the algorithm optimize the parameters itself (on-the-fly 
parameter choice, self-adjusting parameters)

 Experimental work suggests that dynamic parameter choices often 
outperform static ones (for surveys see [EHM99,KHE15])
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Theory for Dynamic Parameter Choices: 
Deterministic Schedules

 Deterministic variation schedule for the mutation rate (Jansen and 
Wegener [JW00, JW06]): 

 Toggle through the mutation rates 
ଵ



ଶ



ସ



ଵ

ଶ

 Result: There is a function where this dynamic EA takes time 
ଶ , but any static EA takes exponential time

 For most functions, the dynamic EA is slower by a factor of  

 [unpublished] For jump functions with (not too small) jump size , 
this gives a significant improvement: 

 faster than standard-bit mutation by a factor of ஐ 

 slower than fast mutation by a factor of ஐ 

  First example proving that dynamic parameter choices can be 
beneficial.
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Theory for Dynamic Parameter Choices: 
Depending on the Fitness

 Fitness-dependent mutation rate [BDN10]: When optimizing the 
LeadingOnes test function  with the (1+1) EA

 the fixed mutation rate 
ଵ


gives a runtime of ଶ

 the fixed mutation rate 
ଵ.ହଽ


gives ଶ (optimal fixed mut. rate)

 the mutation rate 
𝟏

𝑳𝑶 𝒙 ା𝟏
gives ଶ (optimal dynamic rate)

 Fitness-dependent offspring pop. size

 with the right fitness-dependent , the EA optimizes OneMax in 
time [BLS14]

 with 
𝒏

𝒏ି𝒇(𝒙)
, the GA optimizes OneMax in time 

instead of roughly with best static [DDE15]

  Fitness-dependent parameters can pay off. It is hard to find the optimal 
dependence, but many others give improvements as well.
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Theory for Dynamic Parameter Choices:
Success-based Dynamics

 Success-based choice of island number: You can reduce of the parallel 
runtime (but not the total work) of an island model when choosing the 
number of islands dynamically (Lässig and Sudholt [LS11]):

 double the number of islands after each iteration without fitness gain

 half the number of islands after each improving iteration

 Success-based choice (1/5-th rule) of in the (1+( , )) GA finds the 
optimal mutation strength [DD18] ( a constant):

 ర after each iteration without fitness gain

 after each improving iteration

 Important that the fourth root is taken ( 1/5-th rule). 
The doubling scheme of [LS11] would not work

 Simple mechanisms to automatically find the current-best parameter 
setting (note: this is great even when the optimal parameter does not 
change over time, but is hard to know beforehand)
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A Run of the Self-Adjusting GA
on OneMax ( )

93
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Theory for Dynamic Parameter Choices:
Success-based Dynamics II – Stagnation 

Detection

 Previous success-based dynamics: 

 Work well when the characteristics of the landscape changes slowly 
 good parameter values “follow” the changes of the landscape.

 Not much known for abrupt changes, e.g., jump functions.

 Very recent idea: “Stagnation detection” [RW21a, RW21b, RW22, DR23]

 When for too long (details omitted) no improvement happened, increase 
the mutation strength (because there’ll be no improvement close by).

 Can be added to all mutation-based algorithms.

 Gives the best runtime for the (1+1) EA on jump functions.

  Very simple, very promising idea!
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Theory for Dynamic Parameter Choices:
Self-Adaptation

 So far: An extra mechanism added onto the EA controls the parameters.

 Self-adaptation: Let the usual variation-selection cycle do this for you!

 Add the parameter to the individual (extended representation)

 Extended mutation: first mutate the parameter, then mutate the 
individual taking into account the new parameter value

 Hope: Better parameter values lead to fitter individuals which are 
preferred by the (non-extended) selection mechanisms of the EA

 First proof that this can work (artificial example) [DL16b]

 Self-adaptation can find the right mutation rate for the (1, EA on OneMax
(classic benchmark) [DWY21]

 Self-adaptation can find the right mutation rate for the ( , ) EA on 
LeadingOnes (also with unknown-solution length) [CL20]

  Generic way to adapt parameters, but not well-understood
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Summary Dynamic Parameter Choices

 State of the art: A growing number of results, some very promising

 personal opinion: this is the future of discrete EC, as it allows to 
integrate very powerful natural principles like adaption and learning

 survey on theory: [DD20]
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An extension of the classi-
fication of Eiben, Hinterding, 
and Michalewicz (1999)

[DJ00,DJ06]

[BDN10,BLS14,DDE15]

[DL16b,CL20,DWY21]

[LS11,DDK16,DDY16,BD17,DD18,DDK18,DGWY19,EGL+19, RW20,
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KLLZ23]

[hyper-heuristics: AL14, DLOW18, LOW20, LOW23, 
DDLS23]
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Hot Topic 5: Fine-grained Runtime Analysis

 Classic runtime analysis: Analyze the time until the optimum is found.

 Recently: Runtime notions that give more or more relevant information.

 Fixed budget perspective: Analyze the (expected) solution quality 
obtainable in a given time budget [JZ12,DJWZ13,JZ14a,JZ14b,LS15,NNS17,DDY20,KW20] 

 Interesting from the application perspective, but difficult to analyze!

 Fixed target analysis, starting with good solutions: Classic runtime notion 
extended to arbitrary starting/ target solution qualities [BDDV20,ABD20a,DK21a]. 

 Classic proofs can be re-used, but different algorithms become good.

 Parameterized complexity: Analyze the runtime relative to a parameter of 
the input instance [Sto06,Sto07,KLNO10,SN12,KN13,SNN14,FN15,CLNP16,Sut21]

 Hot topic in classic algorithms since 1999
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Part VI:

Conclusion
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Summary

 Theoretical research gives deep insights in the working principles of EC, 
with results that are of a different nature than in experimental work

 “very true” (=proven), but often apply to idealized settings only

 for all instances and problem sizes, but sometimes less precise

 often only asymptotic results instead of absolute numbers

 proofs tell us why certain facts are true

 The different nature of theoretical and experimental results implies that 
a real understanding is best obtained from a combination of both

 Theory-driven curiosity and the clarifying nature of mathematical proofs
can lead to new ideas, insights and algorithms
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Summary (2): 
How to Use Theory in Your Work?

 Try to read theory papers (or listen to theory talks), but don’t expect more 
than from other papers 

 Neither a theory nor an experimental paper can tell you the best 
algorithm for your particular problem, but both can suggest ideas

 Try “theory-style thinking”: take a very very simplified version of your 
problem and imagine what could work and why

 Don’t be shy to talk to the theory people!

 they will not have the ultimate solution and their mathematical 
education makes them very cautious presenting an ultimate solution

 but they might be able to prevent you from a wrong path or suggest 
alternatives to your current approach
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Theory Books (Written for Theory People, 
But Not Too Hard to Read)

 Neumann/Witt (2010). Bioinspired Computation in Combinatorial Optimization, 
Springer

 Auger/Doerr (2011). Theory of Randomized Search Heuristics, World Scientific

 Jansen (2013). Analyzing Evolutionary Algorithms, Springer

 Doerr/Neumann (2020). Theory of Evolutionary Computation – Recent 
Developments in Discrete Optimization, Springer. Free electronic version at
http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr_neumann_book.html
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